Recognize Landmarks Securely with Cloud Vision using Firebase Auth and Functions on Android

In order to call a Google Cloud API from your app, you need to create an intermediate REST API that handles authorization and protects secret values such as API keys. You then need to write code in your mobile app to authenticate to and communicate with this intermediate service.

One way to create this REST API is by using Firebase Authentication and Functions, which gives you a managed, serverless gateway to Google Cloud APIs that handles authentication and can be called from your mobile app with pre-built SDKs.

This guide demonstrates how to use this technique to call the Cloud Vision API from your app. This method will allow all authenticated users to access Cloud Vision billed services through your Cloud project, so consider whether this auth mechanism is sufficient for your use case before proceeding.

Before you begin

Configure your project

  1. If you haven't already, add Firebase to your Android project.
  2. If you haven't already enabled Cloud-based APIs for your project, do so now:

    1. Open the Firebase ML APIs page in the Firebase console.
    2. If you haven't already upgraded your project to the pay-as-you-go Blaze pricing plan, click Upgrade to do so. (You'll be prompted to upgrade only if your project isn't on the Blaze pricing plan.)

      Only projects on the Blaze pricing plan can use Cloud-based APIs.

    3. If Cloud-based APIs aren't already enabled, click Enable Cloud-based APIs.
  3. Configure your existing Firebase API keys to disallow access to the Cloud Vision API:
    1. Open the Credentials page of the Cloud console.
    2. For each API key in the list, open the editing view, and in the Key Restrictions section, add all of the available APIs except the Cloud Vision API to the list.

Deploy the callable function

Next, deploy the Cloud Function you will use to bridge your app and the Cloud Vision API. The functions-samples repository contains an example you can use.

By default, accessing the Cloud Vision API through this function will allow only authenticated users of your app access to the Cloud Vision API. You can modify the function for different requirements.

To deploy the function:

  1. Clone or download the functions-samples repo and change to the Node-1st-gen/vision-annotate-image directory:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. Install dependencies:
    cd functions
    npm install
    cd ..
  3. If you don't have the Firebase CLI, install it.
  4. Initialize a Firebase project in the vision-annotate-image directory. When prompted, select your project in the list.
    firebase init
  5. Deploy the function:
    firebase deploy --only functions:annotateImage

Add Firebase Auth to your app

The callable function deployed above will reject any request from non-authenticated users of your app. If you have not already done so, you will need to add Firebase Auth to your app.

Add necessary dependencies to your app

  • Add the dependencies for the Cloud Functions for Firebase (client) and gson Android libraries to your module (app-level) Gradle file (usually <project>/<app-module>/build.gradle.kts or <project>/<app-module>/build.gradle):
    implementation("com.google.firebase:firebase-functions:22.1.0")
    implementation("com.google.code.gson:gson:2.8.6")
  • 1. Prepare the input image

    In order to call Cloud Vision, the image must be formatted as a base64-encoded string. To process an image from a saved file URI:
    1. Get the image as a Bitmap object:

      Kotlin

      varbitmap:Bitmap=MediaStore.Images.Media.getBitmap(contentResolver,uri)

      Java

      Bitmapbitmap=MediaStore.Images.Media.getBitmap(getContentResolver(),uri);
    2. Optionally, scale down the image to save on bandwidth. See the Cloud Vision recommended image sizes.

      Kotlin

      privatefunscaleBitmapDown(bitmap:Bitmap,maxDimension:Int):Bitmap{
      valoriginalWidth=bitmap.width
      valoriginalHeight=bitmap.height
      varresizedWidth=maxDimension
      varresizedHeight=maxDimension
      if(originalHeight > originalWidth){
      resizedHeight=maxDimension
      resizedWidth=
      (resizedHeight*originalWidth.toFloat()/originalHeight.toFloat()).toInt()
      }elseif(originalWidth > originalHeight){
      resizedWidth=maxDimension
      resizedHeight=
      (resizedWidth*originalHeight.toFloat()/originalWidth.toFloat()).toInt()
      }elseif(originalHeight==originalWidth){
      resizedHeight=maxDimension
      resizedWidth=maxDimension
      }
      returnBitmap.createScaledBitmap(bitmap,resizedWidth,resizedHeight,false)
      }

      Java

      privateBitmapscaleBitmapDown(Bitmapbitmap,intmaxDimension){
      intoriginalWidth=bitmap.getWidth();
      intoriginalHeight=bitmap.getHeight();
      intresizedWidth=maxDimension;
      intresizedHeight=maxDimension;
      if(originalHeight > originalWidth){
      resizedHeight=maxDimension;
      resizedWidth=(int)(resizedHeight*(float)originalWidth/(float)originalHeight);
      }elseif(originalWidth > originalHeight){
      resizedWidth=maxDimension;
      resizedHeight=(int)(resizedWidth*(float)originalHeight/(float)originalWidth);
      }elseif(originalHeight==originalWidth){
      resizedHeight=maxDimension;
      resizedWidth=maxDimension;
      }
      returnBitmap.createScaledBitmap(bitmap,resizedWidth,resizedHeight,false);
      }

      Kotlin

      // Scale down bitmap size
      bitmap=scaleBitmapDown(bitmap,640)

      Java

      // Scale down bitmap size
      bitmap=scaleBitmapDown(bitmap,640);
    3. Convert the bitmap object to a base64 encoded string:

      Kotlin

      // Convert bitmap to base64 encoded string
      valbyteArrayOutputStream=ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG,100,byteArrayOutputStream)
      valimageBytes:ByteArray=byteArrayOutputStream.toByteArray()
      valbase64encoded=Base64.encodeToString(imageBytes,Base64.NO_WRAP)

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStreambyteArrayOutputStream=newByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG,100,byteArrayOutputStream);
      byte[]imageBytes=byteArrayOutputStream.toByteArray();
      Stringbase64encoded=Base64.encodeToString(imageBytes,Base64.NO_WRAP);
    4. The image represented by the Bitmap object must be upright, with no additional rotation required.

    2. Invoke the callable function to recognize landmarks

    To recognize landmarks in an image, invoke the callable function, passing a JSON Cloud Vision request.

    1. First, initialize an instance of Cloud Functions:

      Kotlin

      privatelateinitvarfunctions:FirebaseFunctions
      // ...
      functions=Firebase.functions
      

      Java

      privateFirebaseFunctionsmFunctions;
      // ...
      mFunctions=FirebaseFunctions.getInstance();
      
    2. Define a method for invoking the function:

      Kotlin

      privatefunannotateImage(requestJson:String):Task<JsonElement>{
      returnfunctions
      .getHttpsCallable("annotateImage")
      .call(requestJson)
      .continueWith{task->
      // This continuation runs on either success or failure, but if the task
      // has failed then result will throw an Exception which will be
      // propagated down.
      valresult=task.result?.data
      JsonParser.parseString(Gson().toJson(result))
      }
      }
      

      Java

      privateTask<JsonElement>annotateImage(StringrequestJson){
      returnmFunctions
      .getHttpsCallable("annotateImage")
      .call(requestJson)
      .continueWith(newContinuation<HttpsCallableResult,JsonElement>(){
      @Override
      publicJsonElementthen(@NonNullTask<HttpsCallableResult>task){
      // This continuation runs on either success or failure, but if the task
      // has failed then getResult() will throw an Exception which will be
      // propagated down.
      returnJsonParser.parseString(newGson().toJson(task.getResult().getData()));
      }
      });
      }
      
    3. Create a JSON request with Type LANDMARK_DETECTION:

      Kotlin

      // Create json request to cloud vision
      valrequest=JsonObject()
      // Add image to request
      valimage=JsonObject()
      image.add("content",JsonPrimitive(base64encoded))
      request.add("image",image)
      // Add features to the request
      valfeature=JsonObject()
      feature.add("maxResults",JsonPrimitive(5))
      feature.add("type",JsonPrimitive("LANDMARK_DETECTION"))
      valfeatures=JsonArray()
      features.add(feature)
      request.add("features",features)
      

      Java

      // Create json request to cloud vision
      JsonObjectrequest=newJsonObject();
      // Add image to request
      JsonObjectimage=newJsonObject();
      image.add("content",newJsonPrimitive(base64encoded));
      request.add("image",image);
      //Add features to the request
      JsonObjectfeature=newJsonObject();
      feature.add("maxResults",newJsonPrimitive(5));
      feature.add("type",newJsonPrimitive("LANDMARK_DETECTION"));
      JsonArrayfeatures=newJsonArray();
      features.add(feature);
      request.add("features",features);
      
    4. Finally, invoke the function:

      Kotlin

      annotateImage(request.toString())
      .addOnCompleteListener{task->
      if(!task.isSuccessful){
      // Task failed with an exception
      // ...
      }else{
      // Task completed successfully
      // ...
      }
      }
      

      Java

      annotateImage(request.toString())
      .addOnCompleteListener(newOnCompleteListener<JsonElement>(){
      @Override
      publicvoidonComplete(@NonNullTask<JsonElement>task){
      if(!task.isSuccessful()){
      // Task failed with an exception
      // ...
      }else{
      // Task completed successfully
      // ...
      }
      }
      });
      

    3. Get information about the recognized landmarks

    If the landmark recognition operation succeeds, a JSON response of BatchAnnotateImagesResponse will be returned in the task's result. Each object in the landmarkAnnotations array represents a landmark that was recognized in the image. For each landmark, you can get its bounding coordinates in the input image, the landmark's name, its latitude and longitude, its Knowledge Graph entity ID (if available), and the confidence score of the match. For example:

    Kotlin

    for(labelintask.result!!.asJsonArray[0].asJsonObject["landmarkAnnotations"].asJsonArray){
    vallabelObj=label.asJsonObject
    vallandmarkName=labelObj["description"]
    valentityId=labelObj["mid"]
    valscore=labelObj["score"]
    valbounds=labelObj["boundingPoly"]
    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for(locinlabelObj["locations"].asJsonArray){
    vallatitude=loc.asJsonObject["latLng"].asJsonObject["latitude"]
    vallongitude=loc.asJsonObject["latLng"].asJsonObject["longitude"]
    }
    }
    

    Java

    for(JsonElementlabel:task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("landmarkAnnotations").getAsJsonArray()){
    JsonObjectlabelObj=label.getAsJsonObject();
    StringlandmarkName=labelObj.get("description").getAsString();
    StringentityId=labelObj.get("mid").getAsString();
    floatscore=labelObj.get("score").getAsFloat();
    JsonObjectbounds=labelObj.get("boundingPoly").getAsJsonObject();
    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for(JsonElementloc:labelObj.get("locations").getAsJsonArray()){
    JsonObjectlatLng=loc.getAsJsonObject().get("latLng").getAsJsonObject();
    doublelatitude=latLng.get("latitude").getAsDouble();
    doublelongitude=latLng.get("longitude").getAsDouble();
    }
    }
    

    Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

    Last updated 2025年11月06日 UTC.