std::ranges::move_backward, std::ranges::move_backward_result
std::ranges
<algorithm>
std::bidirectional_iterator I2 >
requires std::indirectly_movable <I1, I2>
constexpr move_backward_result<I1, I2>
requires std::indirectly_movable <ranges::iterator_t <R>, I>
constexpr move_backward_result<ranges::borrowed_iterator_t <R>, I>
using move_backward_result = ranges::in_out_result <I, O>;
[
first,
last)
, to another range [
d_last - N,
d_last)
, where N = ranges::distance (first, last). The elements are moved in reverse order (the last element is moved first), but their relative order is preserved. The behavior is undefined if d_last is within (first, last]
. In such a case, ranges::move may be used instead.The elements in the moved-from range will still contain valid values of the appropriate type, but not necessarily the same values as before the move, as if using *(d_last - n) = ranges::iter_move (last - n) for each integer n
, where 0 ≤ n < N.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
[edit] Parameters
[edit] Return value
{last, d_last - N}.
[edit] Complexity
[edit] Notes
When moving overlapping ranges, ranges::move is appropriate when moving to the left (beginning of the destination range is outside the source range) while ranges::move_backward is appropriate when moving to the right (end of the destination range is outside the source range).
[edit] Possible implementation
struct move_backward_fn { template<std::bidirectional_iterator I1, std::sentinel_for <I1> S1, std::bidirectional_iterator I2> requires std::indirectly_movable <I1, I2> constexpr ranges::move_backward_result<I1, I2> operator()(I1 first, S1 last, I2 d_last) const { auto i {last}; for (; i != first; *--d_last = ranges::iter_move (--i)) {} return {std::move(last), std::move(d_last)}; } template<ranges::bidirectional_range R, std::bidirectional_iterator I> requires std::indirectly_movable <ranges::iterator_t <R>, I> constexpr ranges::move_backward_result<ranges::borrowed_iterator_t <R>, I> operator()(R&& r, I d_last) const { return (*this)(ranges::begin (r), ranges::end (r), std::move(d_last)); } }; inline constexpr move_backward_fn move_backward {};
[edit] Example
#include <algorithm> #include <iostream> #include <string> #include <string_view> #include <vector> using Vec = std::vector <std::string >; void print(std::string_view rem, Vec const& vec) { std::cout << rem << "[" << vec.size() << "]: "; for (const std::string & s : vec) std::cout << (s.size() ? s : std::string {"·"}) << ' '; std::cout << '\n'; } int main() { Vec a{"▁", "▂", "▃", "▄", "▅", "▆", "▇", "█"}; Vec b(a.size()); print("Before move:\n" "a", a); print("b", b); std::ranges::move_backward(a, b.end()); print("\n" "Move a >> b:\n" "a", a); print("b", b); std::ranges::move_backward(b.begin(), b.end(), a.end()); print("\n" "Move b >> a:\n" "a", a); print("b", b); std::ranges::move_backward(a.begin(), a.begin()+3, a.end()); print("\n" "Overlapping move a[0, 3) >> a[5, 8):\n" "a", a); }
Possible output:
Before move: a[8]: ▁ ▂ ▃ ▄ ▅ ▆ ▇ █ b[8]: · · · · · · · · Move a >> b: a[8]: · · · · · · · · b[8]: ▁ ▂ ▃ ▄ ▅ ▆ ▇ █ Move b >> a: a[8]: ▁ ▂ ▃ ▄ ▅ ▆ ▇ █ b[8]: · · · · · · · · Overlapping move a[0, 3) >> a[5, 8): a[8]: · · · ▄ ▅ ▁ ▂ ▃