Yasunobu Nakamura
Yasunobu Nakamura | |
---|---|
Yasunobu Nakamura | |
Born | 1968 |
Known for | Work with "hybrid quantum information systems".[1] [2] First demonstration of coherent control of a Cooper pair box-based superconducting charge qubit.[3] [4] |
Awards | Micius Quantum Prize 2021 |
Scientific career | |
Fields | Quantum information science, Superconducting quantum computing |
Yasunobu Nakamura (中村 泰信 Nakamura Yasunobu) is a Japanese physicist. He is a professor at the University of Tokyo's Research Center for Advanced Science and Technology (RCAST)[6] and the Principal Investigator of the Superconducting Quantum Electronics Research Group (SQERG) at the Center for Emergent Matter Science (CEMS) within RIKEN.[7] He has contributed primarily to the area of quantum information science,[8] particularly in superconducting quantum computing and hybrid quantum systems.[9] [10] [11]
Education and early work
[edit ]While a child, Nakamura's family moved from Osaka to Hinode, Tokyo, where he would gain his early education.[12] He obtained his Bachelor of Science (1990), Master of Science (1992), and Ph.D. (2011) degrees at the University of Tokyo. In 1999, as a researcher at NEC, Nakamura and collaborators Yuri Pashkin and Jaw-Shen Tsai demonstrated "electrical coherent control of a qubit in a solid-state electronic device"[3] and in 2001 "realized the first measurement of the Rabi oscillations associated with the transition between two Josephson levels in the Cooper pair box"[13] [14] in a configuration developed by Michel Devoret and colleagues in 1998.[13] [15]
In 2000, Nakamura was featured as a "Younger Scientist" by the Japan Society of Applied Physics for his work at NEC in "quantum-state control of nanoscale superconducting devices."[16] From 2001-2002, he visited the group of Hans Mooij [de] at TU Delft on a sabbatical from NEC, where he worked with Irinel Chiorescu, Kees Harmans, and Mooij to create the first flux qubit.[17] [18] [19] In 2003, he was named one of MIT Technology Review's top innovators under 35 years old, in which editors noted that "Nakamura and a collaborator got two qubits to interact in a manner that had been predicted but never demonstrated" at the time.[20]
Current work
[edit ]As of 3 October 2016[update] , the Japan Science and Technology Agency (科学技術振興機構) announced funding for Nakamura's work through their Exploratory Research for Advanced Technology (ERATO) program.[21] The project, entitled Macroscopic Quantum Machines,[22] seeks to dramatically improve quantum state control technology to further the field of quantum computing. Of principal focus is the development of a highly scalable platform for implementing quantum information processing techniques, as well as the creation of hybrid quantum systems which interface with microwave quantum optics. In an article in Nikkei Science [ja] in 2018, it was announced that work towards the construction of a quantum computer with 100 superconducting qubits was underway.[23] In 2019, the Japanese Ministry of Education, Culture, Sports, Science and Technology launched a quantum technology project known as QLEAP, with Nakamura as the team leader for the quantum information processing component.[24] The project aims to develop superconducting quantum computers and other quantum technologies over a ten-year period, by increasing collaboration between academia and industry.
In past years, Nakamura and collaborators have published their findings on the efficient detection of single microwave frequency photons,[25] the suppression of quasiparticles in superconducting quantum computing environments for the improvement of qubit coherence times,[26] the development of "a deterministic scheme to generate maximal entanglement between remote superconducting atoms, using a propagating microwave photon as a flying qubit",[27] and the realization of a hybrid quantum system by the strong, coherent coupling between a collective magnetic mode of a ferromagnetic sphere and a superconducting qubit.[1]
More recently, results have been published in which superconducting qubits were used to resolve quanta of magnon number states,[28] [29] to create a quantitatively non-classical photon number distribution,[30] to measure fluctuations in a surface acoustic wave (SAW) resonator,[31] and to measure an itinerant microwave photon in a quantum nondemolition (QND) detection experiment.[32] [33] A superconducting circuit was later used to realize information-to-work conversion by a Maxwell's demon,[34] radio waves and optical light were optomechanically coupled to surface acoustic waves,[35] and an ordered vortex lattice in a Josephson junction array was observed.[36]
Nakamura has spoken several times at quantum information science conferences and seminars, including at the University of Vienna,[37] the Institute for Theoretical Atomic Molecular and Optical Physics at Harvard University,[38] [39] the National Center of Competence in Research's Quantum Science and Technology Monte Verità conference,[40] the Institute for Quantum Computing at the University of Waterloo,[41] the Institute for Molecular Engineering at the University of Chicago [42] the Institute for Quantum Optics and Quantum Information (IQOQI),[43] and the Yale Quantum Institute at Yale University.[44]
In 2020, Nakamura was named as a fellow of the American Physical Society for "the first demonstration of coherent time-dependent manipulation of superconducting qubits, and for contributions to the development of superconducting quantum circuits, microwave quantum optics, and hybrid quantum systems".[45]
Honors and awards
[edit ]- 1999 – Young Investigator Award, Japan Society of Applied Physics [46]
- 1999 – The 1st Sir Martin Wood Prize for Japan[47] [48]
- 1999 – The 45th Nishina Memorial Prize [49]
- 2003 – TR100, MIT Technology Review [20]
- 2004 – Agilent Technologies Europhysics Prize (with Michel Devoret, Daniel Esteve, and Hans Mooij)[50]
- 2008 – Simon Memorial Prize (with Jaw-Shen Tsai)[51]
- 2014 – The 11th Leo Esaki Prize [ja] (with Jaw-Shen Tsai)[52]
- 2018 - The 19th JSAP Outstanding Achievement Award[53] [54]
- 2020 - American Physical Society (APS) Fellow[45]
References
[edit ]- ^ a b Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, "Coherent coupling between a ferromagnetic magnon and a superconducting qubit", Science 349, 405-408 (2015), doi:10.1126/science.aaa3693
- ^ Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, "Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit", Physical Review Letters 113, 083603 (2014), doi:10.1103/PhysRevLett.113.083603, arxiv:1405.1913
- ^ a b Y. Nakamura, Yu. A. Pashkin and J.- S. Tsai, "Coherent control of macroscopic quantum states in a single-Cooper-pair box", Nature 398, 786-788 (1999), doi:10.1038/19718, arXiv:9904003
- ^ T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J.- S. Tsai, "Demonstration of conditional gate operation using superconducting charge qubits", Nature 425, 941-944 (2003), doi:10.1038/nature02015, arxiv:0311067
- ^ "RIKEN Tuning Into Quantum Computers". 2007年08月17日. Retrieved 2017年06月19日.
- ^ "Research Groups" . Retrieved 2016年12月21日.
- ^ "Superconducting Quantum Electronics Research Group" . Retrieved 2020年10月22日.
- ^ T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. O'Brien, "Quantum computers", Nature 464, 45-53 (2010), doi:10.1038/nature08812, arxiv:1009:2267
- ^ "マイナビニュース". 2015年07月10日. Retrieved 2016年12月22日.
- ^ "ようこそ量子 Interview". 2016年11月15日. Retrieved 2016年12月22日.
- ^ "Science Daily 2015". 2015年08月03日. Retrieved 2016年12月22日.
- ^ "UTokyo Voices 066". 2019年06月20日. Retrieved 2019年06月21日.
- ^ a b "Bell Prize 2013". Archived from the original on 2014年06月04日. Retrieved 2016年12月21日.
- ^ Y. Nakamura, Y.A. Pashkin, and J.S. Tsai, "Rabi Oscillations in a Josephson-Junction Charge Two-Level System", Physical Review Letters 87, 246601 (2001), doi:10.1103/PhysRevLett.87.246601
- ^ V. Bouchiat, D. Vion, P. Joyez, D. Esteve and M. H. Devoret, "Quantum coherence with a single Cooper pair", Physica Scripta T76, 165-170 (1998), doi:10.1238/Physica.Topical.076a00165
- ^ "JSAP Younger Scientists" (PDF). Retrieved 2016年12月21日.
- ^ I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, "Coherent Quantum Dynamics of a Superconducting Flux Qubit", Science 299, 5614, 1869-1871, (2003), doi:10.1126/science.1081045, arxiv:0305461
- ^ J. Clarke, "Flux Qubit Completes the Hat Trick", Science 299, 5614, 1850-1851, (2003), doi:10.1126/science.1083001
- ^ "The first Delft qubit". 2017年11月04日. Retrieved 2017年11月04日.
- ^ a b "Innovators Under 35" . Retrieved 2016年12月21日.
- ^ "戦略的創造研究推進事業における" . Retrieved 2016年12月21日.
- ^ "研究総括および研究領域" . Retrieved 2016年12月21日.
- ^ "超電導量子ビットを創始 100ビットを目指す". September 2018. Retrieved 2019年06月21日.
- ^ "光・量子飛躍フラッグシッププログラム(Q-LEAP)" . Retrieved 2019年04月03日.
- ^ a b K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.- S. Tsai, T. Yamamoto, and Y. Nakamura, "Single microwave-photon detector using an artificial Λ-type three-level system", Nature Communications 7, 12303 (2016), doi:10.1038/ncomms12303
- ^ S. Gustavsson, F. Yan, G. Catelani, J. Bylander, A. Kamal, J. Birenbaum, D. Hover, D. Rosenberg, G. Samach, A. P. Sears, S. J. Weber, J. L. Yoder, J. Clarke, A. J. Kerman, F. Yoshihara, Y. Nakamura, T. P. Orlando, and W. D. Oliver, "Suppressing relaxation in superconducting qubits by quasiparticle pumping", Science 354, 6319, 1573-1577 (2016), doi:10.1126/science.aah5844
- ^ K. Koshino, K. Inomata, Z. R. Lin, Y. Tokunaga, T. Yamamoto, and Y. Nakamura, "Theory of Deterministic Entanglement Generation between Remote Superconducting Atoms", Physical Review Applied 7, 064006 (2017), doi:10.1103/PhysRevApplied.7.064006
- ^ D. Lachance-Quiriom, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, and Y. Nakamura, "Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet", Science Advances 3, 7, e1603150 (2017), doi:10.1126/sciadv.1603150
- ^ "Quantifying quanta". 2017年11月22日. Retrieved 2019年04月03日.
- ^ S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, "Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive", Physical Review Letters 119, 023602 (2017), doi:10.1103/PhysRevLett.119.023602
- ^ A. Noguchi, R. Yamazaki, Y. Tabuchi, and Y. Nakamura, "Qubit-Assisted Transduction for a Detection of Surface Acoustic Waves near the Quantum Limit", Physical Review Letters 119, 180505 (2017), doi:10.1103/PhysRevLett.119.180505
- ^ S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, "Quantum non-demolition detection of an itinerant microwave photon", Nature Physics 14, 546-549 (2018), doi:10.1038/s41567-018-0066-3
- ^ "Viewpoint: Single Microwave Photons Spotted on the Rebound". 2018年04月23日. Retrieved 2019年04月03日.
- ^ Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, "Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system", Nature Communications 9, 1291 (2018), doi:10.1038/s41467-018-03686-y
- ^ A. Okada, F. Oguro, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, and Y. Nakamura, "Cavity Enhancement of Anti-Stokes Scattering via Optomechanical Coupling with Surface Acoustic Waves", Physical Review Applied 10, 024002 (2018), doi:10.1103/PhysRevApplied.10.024002
- ^ R. Cosmic, K. Ikegami, Z. Lin, K. Inomata, J. M. Taylor, and Y. Nakamura, "Circuit-QED-based measurement of vortex lattice order in a Josephson junction array", Physical Review B 98, 060501(R) (2018), doi:10.1103/PhysRevB.98.060501
- ^ "University of Vienna 2014" . Retrieved 2016年12月21日.
- ^ "ITAMP" . Retrieved 2016年12月21日.
- ^ "ITAMP Video". YouTube . 2015年07月15日. Retrieved 2016年12月22日.
- ^ "NCCR QSIT" . Retrieved 2016年12月21日.
- ^ "IQC 2016" . Retrieved 2016年12月21日.
- ^ "IME Distinguished Colloquium Series" . Retrieved 2019年04月03日.
- ^ "IQOQI Colloquium" . Retrieved 2019年04月03日.
- ^ "YQI Colloquium" . Retrieved 2019年04月03日.
- ^ a b "APS Fellows" . Retrieved 2020年12月01日.
- ^ "JSAP Younger Scientists" (PDF). Retrieved 2017年01月24日.
- ^ "Prize Winners". Millennium Science Forum. Retrieved 2019年04月03日.
- ^ "2016 Sir Martin Wood Prize for Japan". Oxford Instruments . Retrieved 2017年01月24日.
- ^ "NEC Awards FY1999" . Retrieved 2017年01月24日.
- ^ "Agilent Technologies Prize". 2004年06月17日. Retrieved 2016年12月21日.
- ^ "Simon Memorial Prize: Past Winners" . Retrieved 2017年06月13日.
- ^ "RCAST News". 2014. Retrieved 2017年01月24日.
- ^ "JSAP Outstanding Achievement Award Recipients" . Retrieved 2019年06月21日.
- ^ "第19回 応用物理学会業績賞" . Retrieved 2019年06月21日.