Jump to content
Wikipedia The Free Encyclopedia

Yan's theorem

From Wikipedia, the free encyclopedia
This article is an orphan, as no other articles introduce links to this page from related articles ; try the Find link tool for suggestions. (February 2023)

In probability theory, Yan's theorem is a separation and existence result. It is of particular interest in financial mathematics where one uses it to prove the Kreps-Yan theorem.

The theorem was published by Jia-An Yan.[1] It was proven for the L1 space and later generalized by Jean-Pascal Ansel to the case 1 p < + {\displaystyle 1\leq p<+\infty } {\displaystyle 1\leq p<+\infty }.[2]

Yan's theorem

[edit ]

Notation:

Ω ¯ {\displaystyle {\overline {\Omega }}} {\displaystyle {\overline {\Omega }}} is the closure of a set Ω {\displaystyle \Omega } {\displaystyle \Omega }.
A B = { f g : f A , g B } {\displaystyle A-B=\{f-g:f\in A,\;g\in B\}} {\displaystyle A-B=\{f-g:f\in A,\;g\in B\}}.
I A {\displaystyle I_{A}} {\displaystyle I_{A}} is the indicator function of A {\displaystyle A} {\displaystyle A}.
q {\displaystyle q} {\displaystyle q} is the conjugate index of p {\displaystyle p} {\displaystyle p}.

Statement

[edit ]

Let ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},P)} {\displaystyle (\Omega ,{\mathcal {F}},P)} be a probability space, 1 p < + {\displaystyle 1\leq p<+\infty } {\displaystyle 1\leq p<+\infty } and B + {\displaystyle B_{+}} {\displaystyle B_{+}} be the space of non-negative and bounded random variables. Further let K L p ( Ω , F , P ) {\displaystyle K\subseteq L^{p}(\Omega ,{\mathcal {F}},P)} {\displaystyle K\subseteq L^{p}(\Omega ,{\mathcal {F}},P)} be a convex subset and 0 K {\displaystyle 0\in K} {\displaystyle 0\in K}.

Then the following three conditions are equivalent:

  1. For all f L + p ( Ω , F , P ) {\displaystyle f\in L_{+}^{p}(\Omega ,{\mathcal {F}},P)} {\displaystyle f\in L_{+}^{p}(\Omega ,{\mathcal {F}},P)} with f 0 {\displaystyle f\neq 0} {\displaystyle f\neq 0} exists a constant c > 0 {\displaystyle c>0} {\displaystyle c>0}, such that c f K B + ¯ {\displaystyle cf\not \in {\overline {K-B_{+}}}} {\displaystyle cf\not \in {\overline {K-B_{+}}}}.
  2. For all A F {\displaystyle A\in {\mathcal {F}}} {\displaystyle A\in {\mathcal {F}}} with P ( A ) > 0 {\displaystyle P(A)>0} {\displaystyle P(A)>0} exists a constant c > 0 {\displaystyle c>0} {\displaystyle c>0}, such that c I A K B + ¯ {\displaystyle cI_{A}\not \in {\overline {K-B_{+}}}} {\displaystyle cI_{A}\not \in {\overline {K-B_{+}}}}.
  3. There exists a random variable Z L q {\displaystyle Z\in L^{q}} {\displaystyle Z\in L^{q}}, such that Z > 0 {\displaystyle Z>0} {\displaystyle Z>0} almost surely and
sup Y K E [ Z Y ] < + {\displaystyle \sup \limits _{Y\in K}\mathbb {E} [ZY]<+\infty } {\displaystyle \sup \limits _{Y\in K}\mathbb {E} [ZY]<+\infty }.

Literature

[edit ]

References

[edit ]
  1. ^ Yan, Jia-An (1980). "Caracterisation d' une Classe d'Ensembles Convexes de L 1 {\displaystyle L^{1}} {\displaystyle L^{1}} ou H 1 {\displaystyle H^{1}} {\displaystyle H^{1}}". Séminaire de probabilités de Strasbourg. 14: 220–222.
  2. ^ Ansel, Jean-Pascal; Stricker, Christophe (1990). "Quelques remarques sur un théorème de Yan". Séminaire de Probabilités XXIV, Lect. Notes Math. Springer.

AltStyle によって変換されたページ (->オリジナル) /