Yan's theorem
Appearance
From Wikipedia, the free encyclopedia
This article is an orphan, as no other articles introduce links to this page from related articles ; try the Find link tool for suggestions. (February 2023)
In probability theory, Yan's theorem is a separation and existence result. It is of particular interest in financial mathematics where one uses it to prove the Kreps-Yan theorem.
The theorem was published by Jia-An Yan.[1] It was proven for the L1 space and later generalized by Jean-Pascal Ansel to the case {\displaystyle 1\leq p<+\infty }.[2]
Yan's theorem
[edit ]Notation:
- {\displaystyle {\overline {\Omega }}} is the closure of a set {\displaystyle \Omega }.
- {\displaystyle A-B=\{f-g:f\in A,\;g\in B\}}.
- {\displaystyle I_{A}} is the indicator function of {\displaystyle A}.
- {\displaystyle q} is the conjugate index of {\displaystyle p}.
Statement
[edit ]Let {\displaystyle (\Omega ,{\mathcal {F}},P)} be a probability space, {\displaystyle 1\leq p<+\infty } and {\displaystyle B_{+}} be the space of non-negative and bounded random variables. Further let {\displaystyle K\subseteq L^{p}(\Omega ,{\mathcal {F}},P)} be a convex subset and {\displaystyle 0\in K}.
Then the following three conditions are equivalent:
- For all {\displaystyle f\in L_{+}^{p}(\Omega ,{\mathcal {F}},P)} with {\displaystyle f\neq 0} exists a constant {\displaystyle c>0}, such that {\displaystyle cf\not \in {\overline {K-B_{+}}}}.
- For all {\displaystyle A\in {\mathcal {F}}} with {\displaystyle P(A)>0} exists a constant {\displaystyle c>0}, such that {\displaystyle cI_{A}\not \in {\overline {K-B_{+}}}}.
- There exists a random variable {\displaystyle Z\in L^{q}}, such that {\displaystyle Z>0} almost surely and
- {\displaystyle \sup \limits _{Y\in K}\mathbb {E} [ZY]<+\infty }.
Literature
[edit ]- Yan, Jia-An (1980). "Caracterisation d' une Classe d'Ensembles Convexes de {\displaystyle L^{1}} ou {\displaystyle H^{1}}". Séminaire de probabilités de Strasbourg. 14: 220–222.
- Freddy Delbaen and Walter Schachermayer: The Mathematics of Arbitrage (2005). Springer Finance
References
[edit ]- ^ Yan, Jia-An (1980). "Caracterisation d' une Classe d'Ensembles Convexes de {\displaystyle L^{1}} ou {\displaystyle H^{1}}". Séminaire de probabilités de Strasbourg. 14: 220–222.
- ^ Ansel, Jean-Pascal; Stricker, Christophe (1990). "Quelques remarques sur un théorème de Yan". Séminaire de Probabilités XXIV, Lect. Notes Math. Springer.