Jump to content
Wikipedia The Free Encyclopedia

Vinberg's algorithm

From Wikipedia, the free encyclopedia

In mathematics, Vinberg's algorithm is an algorithm, introduced by Ernest Borisovich Vinberg, for finding a fundamental domain of a hyperbolic reflection group.

Conway (1983) used Vinberg's algorithm to describe the automorphism group of the 26-dimensional even unimodular Lorentzian lattice II25,1 in terms of the Leech lattice.

Description of the algorithm

[edit ]

Let Γ < I s o m ( H n ) {\displaystyle \Gamma <\mathrm {Isom} (\mathbb {H} ^{n})} {\displaystyle \Gamma <\mathrm {Isom} (\mathbb {H} ^{n})} be a hyperbolic reflection group. Choose any point v 0 H n {\displaystyle v_{0}\in \mathbb {H} ^{n}} {\displaystyle v_{0}\in \mathbb {H} ^{n}}; we shall call it the basic (or initial) point. The fundamental domain P 0 {\displaystyle P_{0}} {\displaystyle P_{0}} of its stabilizer Γ v 0 {\displaystyle \Gamma _{v_{0}}} {\displaystyle \Gamma _{v_{0}}} is a polyhedral cone in H n {\displaystyle \mathbb {H} ^{n}} {\displaystyle \mathbb {H} ^{n}}. Let H 1 , . . . , H m {\displaystyle H_{1},...,H_{m}} {\displaystyle H_{1},...,H_{m}} be the faces of this cone, and let a 1 , . . . , a m {\displaystyle a_{1},...,a_{m}} {\displaystyle a_{1},...,a_{m}} be outer normal vectors to it. Consider the half-spaces H k = { x R n , 1 | ( x , a k ) 0 } . {\displaystyle H_{k}^{-}=\{x\in \mathbb {R} ^{n,1}|(x,a_{k})\leq 0\}.} {\displaystyle H_{k}^{-}=\{x\in \mathbb {R} ^{n,1}|(x,a_{k})\leq 0\}.}

There exists a unique fundamental polyhedron P {\displaystyle P} {\displaystyle P} of Γ {\displaystyle \Gamma } {\displaystyle \Gamma } contained in P 0 {\displaystyle P_{0}} {\displaystyle P_{0}} and containing the point v 0 {\displaystyle v_{0}} {\displaystyle v_{0}}. Its faces containing v 0 {\displaystyle v_{0}} {\displaystyle v_{0}} are formed by faces H 1 , . . . , H m {\displaystyle H_{1},...,H_{m}} {\displaystyle H_{1},...,H_{m}} of the cone P 0 {\displaystyle P_{0}} {\displaystyle P_{0}}. The other faces H m + 1 , . . . {\displaystyle H_{m+1},...} {\displaystyle H_{m+1},...} and the corresponding outward normals a m + 1 , . . . {\displaystyle a_{m+1},...} {\displaystyle a_{m+1},...} are constructed by induction. Namely, for H j {\displaystyle H_{j}} {\displaystyle H_{j}} we take a mirror such that the root a j {\displaystyle a_{j}} {\displaystyle a_{j}} orthogonal to it satisfies the conditions

(1) ( v 0 , a j ) < 0 {\displaystyle (v_{0},a_{j})<0} {\displaystyle (v_{0},a_{j})<0};

(2) ( a i , a j ) 0 {\displaystyle (a_{i},a_{j})\leq 0} {\displaystyle (a_{i},a_{j})\leq 0} for all i < j {\displaystyle i<j} {\displaystyle i<j};

(3) the distance ( v 0 , H j ) {\displaystyle (v_{0},H_{j})} {\displaystyle (v_{0},H_{j})} is minimum subject to constraints (1) and (2).


References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /