Tsirelson's stochastic differential equation
Tsirelson's stochastic differential equation (also Tsirelson's drift or Tsirelson's equation) is a stochastic differential equation which has a weak solution but no strong solution. It is therefore a counter-example and named after its discoverer Boris Tsirelson.[1] Tsirelson's equation is of the form
- {\displaystyle dX_{t}=a[t,(X_{s},s\leq t)]dt+dW_{t},\quad X_{0}=0,}
where {\displaystyle W_{t}} is the one-dimensional Brownian motion. Tsirelson chose the drift {\displaystyle a} to be a bounded measurable function that depends on the past times of {\displaystyle X} but is independent of the natural filtration {\displaystyle {\mathcal {F}}^{W}} of the Brownian motion. This gives a weak solution, but since the process {\displaystyle X} is not {\displaystyle {\mathcal {F}}_{\infty }^{W}}-measurable, not a strong solution.
Tsirelson's Drift
[edit ]Let
- {\displaystyle {\mathcal {F}}_{t}^{W}=\sigma (W_{s}:0\leq s\leq t)} and {\displaystyle \{{\mathcal {F}}_{t}^{W}\}_{t\in \mathbb {R} _{+}}} be the natural Brownian filtration that satisfies the usual conditions,
- {\displaystyle t_{0}=1} and {\displaystyle (t_{n})_{n\in -\mathbb {N} }} be a descending sequence {\displaystyle t_{0}>t_{-1}>t_{-2}>\dots ,} such that {\displaystyle \lim _{n\to -\infty }t_{n}=0},
- {\displaystyle \Delta X_{t_{n}}=X_{t_{n}}-X_{t_{n-1}}} and {\displaystyle \Delta t_{n}=t_{n}-t_{n-1}},
- {\displaystyle \{x\}=x-\lfloor x\rfloor } be the decimal part.
Tsirelson now defined the following drift
- {\displaystyle a[t,(X_{s},s\leq t)]=\sum \limits _{n\in -\mathbb {N} }{\bigg \{}{\frac {\Delta X_{t_{n}}}{\Delta t_{n}}}{\bigg \}}1_{(t_{n},t_{n+1}]}(t).}
Let the expression
- {\displaystyle \eta _{n}=\xi _{n}+\{\eta _{n-1}\}}
be the abbreviation for
- {\displaystyle {\frac {\Delta X_{t_{n+1}}}{\Delta t_{n+1}}}={\frac {\Delta W_{t_{n+1}}}{\Delta t_{n+1}}}+{\bigg \{}{\frac {\Delta X_{t_{n}}}{\Delta t_{n}}}{\bigg \}}.}
Theorem
[edit ]According to a theorem by Tsirelson and Yor:
1) The natural filtration of {\displaystyle X} has the following decomposition
- {\displaystyle {\mathcal {F}}_{t}^{X}={\mathcal {F}}_{t}^{W}\vee \sigma {\big (}\{\eta _{n-1}\}{\big )},\quad \forall t\geq 0,\quad \forall t_{n}\leq t}
2) For each {\displaystyle n\in -\mathbb {N} } the {\displaystyle \{\eta _{n}\}} are uniformly distributed on {\displaystyle [0,1)} and independent of {\displaystyle (W_{t})_{t\geq 0}} resp. {\displaystyle {\mathcal {F}}_{\infty }^{W}}.
3) {\displaystyle {\mathcal {F}}_{0+}^{X}} is the {\displaystyle P}-trivial σ-algebra, i.e. all events have probability {\displaystyle 0} or {\displaystyle 1}.[2] [3]
Literature
[edit ]- Rogers, L. C. G.; Williams, David (2000). Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus. United Kingdom: Cambridge University Press. pp. 155–156.
References
[edit ]- ^ Tsirel'son, Boris S. (1975). "An Example of a Stochastic Differential Equation Having No Strong Solution". Theory of Probability & Its Applications. 20 (2): 427–430. doi:10.1137/1120049.
- ^ Rogers, L. C. G.; Williams, David (2000). Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus. United Kingdom: Cambridge University Press. p. 156.
- ^ Yano, Kouji; Yor, Marc (2010). "Around Tsirelson's equation, or: The evolution process may not explain everything". Probability Surveys. 12: 1–12. arXiv:0906.3442 . doi:10.1214/15-PS256.