Tridiagonal matrix
In linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal (the first diagonal below this), and the supradiagonal/upper diagonal (the first diagonal above the main diagonal). For example, the following matrix is tridiagonal:
- {\displaystyle {\begin{pmatrix}1&4&0&0\3円&4&1&0\0円&2&3&4\0円&0&1&3\\\end{pmatrix}}.}
The determinant of a tridiagonal matrix is given by the continuant of its elements.[1]
An orthogonal transformation of a symmetric (or Hermitian) matrix to tridiagonal form can be done with the Lanczos algorithm.
Properties
[edit ]A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix.[2] In particular, a tridiagonal matrix is a direct sum of p 1-by-1 and q 2-by-2 matrices such that p + q/2 = n — the dimension of the tridiagonal. Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving linear algebra problems have one of these properties. Furthermore, if a real tridiagonal matrix A satisfies ak,k+1 ak+1,k > 0 for all k, so that the signs of its entries are symmetric, then it is similar to a Hermitian matrix, by a diagonal change of basis matrix. Hence, its eigenvalues are real. If we replace the strict inequality by ak,k+1 ak+1,k ≥ 0, then by continuity, the eigenvalues are still guaranteed to be real, but the matrix need no longer be similar to a Hermitian matrix.[3]
The set of all n × n tridiagonal matrices forms a 3n-2 dimensional vector space.
Many linear algebra algorithms require significantly less computational effort when applied to diagonal matrices, and this improvement often carries over to tridiagonal matrices as well.
Determinant
[edit ]The determinant of a tridiagonal matrix A of order n can be computed from a three-term recurrence relation.[4] Write f1 = |a1| = a1 (i.e., f1 is the determinant of the 1 by 1 matrix consisting only of a1), and let
- {\displaystyle f_{n}={\begin{vmatrix}a_{1}&b_{1}\\c_{1}&a_{2}&b_{2}\\&c_{2}&\ddots &\ddots \\&&\ddots &\ddots &b_{n-1}\\&&&c_{n-1}&a_{n}\end{vmatrix}}.}
The sequence (fi) is called the continuant and satisfies the recurrence relation
- {\displaystyle f_{n}=a_{n}f_{n-1}-c_{n-1}b_{n-1}f_{n-2}}
with initial values f0 = 1 and f−1 = 0. The cost of computing the determinant of a tridiagonal matrix using this formula is linear in n, while the cost is cubic for a general matrix.
Inversion
[edit ]The inverse of a non-singular tridiagonal matrix T
- {\displaystyle T={\begin{pmatrix}a_{1}&b_{1}\\c_{1}&a_{2}&b_{2}\\&c_{2}&\ddots &\ddots \\&&\ddots &\ddots &b_{n-1}\\&&&c_{n-1}&a_{n}\end{pmatrix}}}
is given by
- {\displaystyle (T^{-1})_{ij}={\begin{cases}(-1)^{i+j}b_{i}\cdots b_{j-1}\theta _{i-1}\phi _{j+1}/\theta _{n}&{\text{ if }}i<j\\\theta _{i-1}\phi _{j+1}/\theta _{n}&{\text{ if }}i=j\\(-1)^{i+j}c_{j}\cdots c_{i-1}\theta _{j-1}\phi _{i+1}/\theta _{n}&{\text{ if }}i>j\\\end{cases}}}
where the θi satisfy the recurrence relation
- {\displaystyle \theta _{i}=a_{i}\theta _{i-1}-b_{i-1}c_{i-1}\theta _{i-2}\qquad i=2,3,\ldots ,n}
with initial conditions θ0 = 1, θ1 = a1 and the φi satisfy
- {\displaystyle \phi _{i}=a_{i}\phi _{i+1}-b_{i}c_{i}\phi _{i+2}\qquad i=n-1,\ldots ,1}
with initial conditions φn+1 = 1 and φn = an.[5] [6]
Closed form solutions can be computed for special cases such as symmetric matrices with all diagonal and off-diagonal elements equal[7] or Toeplitz matrices [8] and for the general case as well.[9] [10]
In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice versa.[11] The inverse of a symmetric tridiagonal matrix can be written as a single-pair matrix (a.k.a. generator-representable semiseparable matrix) of the form[12] [13]
{\displaystyle {\begin{pmatrix}\alpha _{1}&-\beta _{1}\\-\beta _{1}&\alpha _{2}&-\beta _{2}\\&\ddots &\ddots &\ddots &\\&&\ddots &\ddots &-\beta _{n-1}\\&&&-\beta _{n-1}&\alpha _{n}\end{pmatrix}}^{-1}={\begin{pmatrix}a_{1}b_{1}&a_{1}b_{2}&\cdots &a_{1}b_{n}\\a_{1}b_{2}&a_{2}b_{2}&\cdots &a_{2}b_{n}\\\vdots &\vdots &\ddots &\vdots \\a_{1}b_{n}&a_{2}b_{n}&\cdots &a_{n}b_{n}\end{pmatrix}}=\left(a_{\min(i,j)}b_{\max(i,j)}\right)}
where {\displaystyle {\begin{cases}\displaystyle a_{i}={\frac {\beta _{i}\cdots \beta _{n-1}}{\delta _{i}\cdots \delta _{n},円b_{n}}}\\\displaystyle b_{i}={\frac {\beta _{1}\cdots \beta _{i-1}}{d_{1}\cdots d_{i}}}\end{cases}}} with {\displaystyle {\begin{cases}d_{n}=\alpha _{n},\quad d_{i-1}=\alpha _{i-1}-{\frac {\beta _{i-1}^{2}}{d_{i}}},&i=n,n-1,\cdots ,2,\\\delta _{1}=\alpha _{1},\quad \delta _{i+1}=\alpha _{i+1}-{\frac {\beta _{i}^{2}}{\delta _{i}}},&i=1,2,\cdots ,n-1.\end{cases}}}
Solution of linear system
[edit ]A system of equations Ax = b for {\displaystyle b\in \mathbb {R} ^{n}} can be solved by an efficient form of Gaussian elimination when A is tridiagonal called tridiagonal matrix algorithm, requiring O(n) operations.[14]
Eigenvalues
[edit ]When a tridiagonal matrix is also Toeplitz, there is a simple closed-form solution for its eigenvalues, namely:[15] [16]
- {\displaystyle a-2{\sqrt {bc}}\cos \left({\frac {k\pi }{n+1}}\right),\qquad k=1,\ldots ,n.}
A real symmetric tridiagonal matrix has real eigenvalues, and all the eigenvalues are distinct (simple) if all off-diagonal elements are nonzero.[17] Numerous methods exist for the numerical computation of the eigenvalues of a real symmetric tridiagonal matrix to arbitrary finite precision, typically requiring {\displaystyle O(n^{2})} operations for a matrix of size {\displaystyle n\times n}, although fast algorithms exist which (without parallel computation) require only {\displaystyle O(n\log n)}.[18]
As a side note, an unreduced symmetric tridiagonal matrix is a matrix containing non-zero off-diagonal elements of the tridiagonal, where the eigenvalues are distinct while the eigenvectors are unique up to a scale factor and are mutually orthogonal.[19]
Similarity to symmetric tridiagonal matrix
[edit ]For unsymmetric or nonsymmetric tridiagonal matrices one can compute the eigendecomposition using a similarity transformation. Given a real tridiagonal, nonsymmetric matrix
- {\displaystyle T={\begin{pmatrix}a_{1}&b_{1}\\c_{1}&a_{2}&b_{2}\\&c_{2}&\ddots &\ddots \\&&\ddots &\ddots &b_{n-1}\\&&&c_{n-1}&a_{n}\end{pmatrix}}}
where {\displaystyle b_{i}\neq c_{i}}. Assume that each product of off-diagonal entries is strictly positive {\displaystyle b_{i}c_{i}>0} and define a transformation matrix {\displaystyle D} by[20]
- {\displaystyle D:=\operatorname {diag} (\delta _{1},\dots ,\delta _{n})\quad {\text{for}}\quad \delta _{i}:={\begin{cases}1&,,円i=1\\{\sqrt {\frac {c_{i-1}\dots c_{1}}{b_{i-1}\dots b_{1}}}}&,,円i=2,\dots ,n,円.\end{cases}}}
The similarity transformation {\displaystyle D^{-1}TD} yields a symmetric tridiagonal matrix {\displaystyle J} by:[21] [20]
- {\displaystyle J:=D^{-1}TD={\begin{pmatrix}a_{1}&\operatorname {sgn} b_{1},円{\sqrt {b_{1}c_{1}}}\\\operatorname {sgn} b_{1},円{\sqrt {b_{1}c_{1}}}&a_{2}&\operatorname {sgn} b_{2},円{\sqrt {b_{2}c_{2}}}\\&\operatorname {sgn} b_{2},円{\sqrt {b_{2}c_{2}}}&\ddots &\ddots \\&&\ddots &\ddots &\operatorname {sgn} b_{n-1},円{\sqrt {b_{n-1}c_{n-1}}}\\&&&\operatorname {sgn} b_{n-1},円{\sqrt {b_{n-1}c_{n-1}}}&a_{n}\end{pmatrix}},円.}
Note that {\displaystyle T} and {\displaystyle J} have the same eigenvalues.
Computer programming
[edit ]A transformation that reduces a general matrix to Hessenberg form will reduce a Hermitian matrix to tridiagonal form. So, many eigenvalue algorithms, when applied to a Hermitian matrix, reduce the input Hermitian matrix to (symmetric real) tridiagonal form as a first step.[22]
A tridiagonal matrix can also be stored more efficiently than a general matrix by using a special storage scheme. For instance, the LAPACK Fortran package stores an unsymmetric tridiagonal matrix of order n in three one-dimensional arrays, one of length n containing the diagonal elements, and two of length n − 1 containing the subdiagonal and superdiagonal elements.
Applications
[edit ]The discretization in space of the one-dimensional diffusion or heat equation
- {\displaystyle {\frac {\partial u(t,x)}{\partial t}}=\alpha {\frac {\partial ^{2}u(t,x)}{\partial x^{2}}}}
using second order central finite differences results in
- {\displaystyle {\begin{pmatrix}{\frac {\partial u_{1}(t)}{\partial t}}\\{\frac {\partial u_{2}(t)}{\partial t}}\\\vdots \\{\frac {\partial u_{N}(t)}{\partial t}}\end{pmatrix}}={\frac {\alpha }{\Delta x^{2}}}{\begin{pmatrix}-2&1&0&\ldots &0\1円&-2&1&\ddots &\vdots \0円&\ddots &\ddots &\ddots &0\\\vdots &&1&-2&1\0円&\ldots &0&1&-2\end{pmatrix}}{\begin{pmatrix}u_{1}(t)\\u_{2}(t)\\\vdots \\u_{N}(t)\\\end{pmatrix}}}
with discretization constant {\displaystyle \Delta x}. The matrix is tridiagonal with {\displaystyle a_{i}=-2} and {\displaystyle b_{i}=c_{i}=1}. Note: no boundary conditions were explicitly assigned, but this matrix happens to correspond to Neumann boundary conditions (zero gradient).
See also
[edit ]Notes
[edit ]- ^ Thomas Muir (1960). A treatise on the theory of determinants . Dover Publications. pp. 516–525.
- ^ Horn, Roger A.; Johnson, Charles R. (1985). Matrix Analysis. Cambridge University Press. p. 28. ISBN 0521386322.
- ^ Horn & Johnson, page 174
- ^ El-Mikkawy, M. E. A. (2004). "On the inverse of a general tridiagonal matrix". Applied Mathematics and Computation. 150 (3): 669–679. doi:10.1016/S0096-3003(03)00298-4.
- ^ Da Fonseca, C. M. (2007). "On the eigenvalues of some tridiagonal matrices". Journal of Computational and Applied Mathematics. 200: 283–286. doi:10.1016/j.cam.2005年08月04日7 .
- ^ Usmani, R. A. (1994). "Inversion of a tridiagonal jacobi matrix". Linear Algebra and Its Applications. 212–213: 413–414. doi:10.1016/0024-3795(94)90414-6 .
- ^ Hu, G. Y.; O'Connell, R. F. (1996). "Analytical inversion of symmetric tridiagonal matrices". Journal of Physics A: Mathematical and General. 29 (7): 1511. Bibcode:1996JPhA...29.1511H. doi:10.1088/0305-4470/29/7/020.
- ^ Huang, Y.; McColl, W. F. (1997). "Analytical inversion of general tridiagonal matrices". Journal of Physics A: Mathematical and General. 30 (22): 7919. Bibcode:1997JPhA...30.7919H. doi:10.1088/0305-4470/30/22/026.
- ^ Mallik, R. K. (2001). "The inverse of a tridiagonal matrix". Linear Algebra and Its Applications. 325 (1–3): 109–139. doi:10.1016/S0024-3795(00)00262-7 .
- ^ Kılıç, E. (2008). "Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions". Applied Mathematics and Computation. 197: 345–357. doi:10.1016/j.amc.2007年07月04日6.
- ^ Raf Vandebril; Marc Van Barel; Nicola Mastronardi (2008). Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems. JHU Press. Theorem 1.38, p. 41. ISBN 978-0-8018-8714-7.
- ^ Meurant, Gerard (1992). "A review on the inverse of symmetric tridiagonal and block tridiagonal matrices" . SIAM Journal on Matrix Analysis and Applications. 13 (3): 707–728. doi:10.1137/0613045.
- ^ Bossu, Sebastien (2024). "Tridiagonal and single-pair matrices and the inverse sum of two single-pair matrices". Linear Algebra and Its Applications. 699: 129–158. arXiv:2304.06100 . doi:10.1016/j.laa.2024年06月01日8.
- ^ Golub, Gene H.; Van Loan, Charles F. (1996). Matrix Computations (3rd ed.). The Johns Hopkins University Press. ISBN 0-8018-5414-8.
- ^ Noschese, S.; Pasquini, L.; Reichel, L. (2013). "Tridiagonal Toeplitz matrices: Properties and novel applications". Numerical Linear Algebra with Applications. 20 (2): 302. doi:10.1002/nla.1811.
- ^ This can also be written as {\displaystyle a+2{\sqrt {bc}}\cos(k\pi /{(n+1)})} because {\displaystyle \cos(x)=-\cos(\pi -x)}, as is done in: Kulkarni, D.; Schmidt, D.; Tsui, S. K. (1999). "Eigenvalues of tridiagonal pseudo-Toeplitz matrices" (PDF). Linear Algebra and Its Applications. 297 (1–3): 63–80. doi:10.1016/S0024-3795(99)00114-7.
- ^ Parlett, B.N. (1997) [1980]. The Symmetric Eigenvalue Problem. Classics in applied mathematics. Vol. 20. SIAM. ISBN 0-89871-402-8. OCLC 228147822.
- ^ Coakley, E.S.; Rokhlin, V. (2012). "A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices". Applied and Computational Harmonic Analysis . 34 (3): 379–414. doi:10.1016/j.acha.201206003 .
- ^ Dhillon, Inderjit Singh (1997). A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem (PDF) (PhD). University of California, Berkeley. p. 8. CSD-97-971, ADA637073.
- ^ a b Kreer, M. (1994). "Analytic birth-death processes: a Hilbert space approach". Stochastic Processes and Their Applications. 49 (1): 65–74. doi:10.1016/0304-4149(94)90112-0.
- ^ Meurant, Gérard (October 2008). "Tridiagonal matrices" (PDF) – via Institute for Computational Mathematics, Hong Kong Baptist University.
- ^ Eidelman, Yuli; Gohberg, Israel; Gemignani, Luca (2007年01月01日). "On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms". Linear Algebra and Its Applications. 420 (1): 86–101. doi:10.1016/j.laa.2006年06月02日8 . ISSN 0024-3795.
External links
[edit ]- Tridiagonal and Bidiagonal Matrices in the LAPACK manual.
- Moawwad El-Mikkawy, Abdelrahman Karawia (2006). "Inversion of general tridiagonal matrices". Applied Mathematics Letters. 19 (8): 712–720. doi:10.1016/j.aml.2005年11月01日2 .
- High performance algorithms for reduction to condensed (Hessenberg, tridiagonal, bidiagonal) form
- Tridiagonal linear system solver in C++