Jump to content
Wikipedia The Free Encyclopedia

Timeline of fundamental physics discoveries

From Wikipedia, the free encyclopedia
Part of a series on
Physics

This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process. Multiple discovery sometimes occurs when multiple research groups discover the same phenomenon at about the same time, and scientific priority is often disputed. The listings below include some of the most significant people and ideas by date of publication or experiment.

Antiquity

[edit ]

Middle Ages

[edit ]

16th century

[edit ]

17th century

[edit ]

18th century

[edit ]

19th century

[edit ]

20th century

[edit ]

21st century

[edit ]

See also

[edit ]

References

[edit ]
  1. ^ Rovelli, Carlo (2023). Anaximander and the Nature of Science. Allen Lane. ISBN 978-0-241-63504-9.
  2. ^ Rovelli, Carlo (2015). "Aristotle's Physics: A Physicist's Look". Journal of the American Philosophical Association . 1: 23–40. arXiv:1312.4057 . doi:10.1017/apa.2014.11.
  3. ^ Russell, Bertrand — History of Western Philosophy (2004) – p. 215
  4. ^ Van der Waerden, B. L. (1987), "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences, 500 (1): 528, Bibcode:1987NYASA.500..525V, doi:10.1111/j.1749-6632.1987.tb37224.x, S2CID 222087224
  5. ^ Marchant, Jo (2022年10月18日). "First known map of night sky found hidden in Medieval parchment". Nature. 610 (7933): 613–614. Bibcode:2022Natur.610..613M. doi:10.1038/d41586-022-03296-1. PMID 36258126. S2CID 252994351.
  6. ^ "Hero's Shortest Path". Harvard Natural Sciences Lecture Demonstrations. Harvard University . Retrieved 2024年02月13日. Hero's Principle states that light undergoing a reflection from a plane surface will follow the path of least distance
  7. ^ Pines, Shlomo (1986), Studies in Arabic versions of Greek texts and in mediaeval science, vol. 2, Brill Publishers, p. 203, ISBN 965-223-626-8
  8. ^ American Heritage Dictionary (January 2005). The American Heritage Science Dictionary. Houghton Mifflin Harcourt. p. 428. ISBN 978-0-618-45504-1.
  9. ^ John L. Heilbron (14 February 2003). The Oxford Companion to the History of Modern Science. Oxford University Press. p. 235. ISBN 978-0-19-974376-6.
  10. ^ "Dalton's atomic theory". Oxford Reference. Retrieved 2025年03月12日.
  11. ^ Boltzmann, Ludwig (1884). "Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie" [Derivation of Stefan's law, concerning the dependency of heat radiation on temperature, from the electromagnetic theory of light]. Annalen der Physik und Chemie (in German). 258 (6): 291–294. Bibcode:1884AnP...258..291B. doi:10.1002/andp.18842580616 .
  12. ^ Sandage, Allan (1988). "Comment on the 1925 Trumpler Paper on Stellar Evolution". Publications of the Astronomical Society of the Pacific. 100 (625): 293–296. doi:10.1086/132169. ISSN 0004-6280. JSTOR 40679099.
  13. ^ "What are stars made of? A century ago, this woman found out—and changed physics forever". National Geographic. January 1, 2025. Retrieved 2025年03月17日.
  14. ^ Bethe, H. A. (1939). "Energy Production in Stars". Physical Review . 55 (5): 434–456. Bibcode:1939PhRv...55..434B. doi:10.1103/PhysRev.55.434 . PMID 17835673.
  15. ^ Gell-Mann, Murray (15 March 1961). The Eightfold Way: A theory of strong interaction symmetry (Report). Office of Scientific and Technical Information (OSTI). doi:10.2172/4008239
  16. ^ Ne'eman, Y. (August 1961). "Derivation of strong interactions from a gauge invariance". Nuclear Physics. 26 (2). Amsterdam: North-Holland Publishing Co.: 222–229. Bibcode:1961NucPh..26..222N. doi:10.1016/0029-5582(61)90134-1.
  17. ^ Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID 120254309.
  18. ^ S. W. Hawking. (1975) "Particle creation by black holes." Comm. Math. Phys. 43 (3) 199 - 220
  19. ^ Rafelski, Johann (2020). "Discovery of Quark-Gluon Plasma: Strangeness Diaries". The European Physical Journal Special Topics. 229 (1): 1–140. arXiv:1911.00831 . Bibcode:2020EPJST.229....1R. doi:10.1140/epjst/e2019-900263-x . ISSN 1951-6355.
  20. ^ "New State of Matter created at CERN". CERN. Retrieved 2020年05月22日.
  21. ^ CMS collaboration (2012). "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC". Physics Letters B . 716 (1): 30–61. arXiv:1207.7235 . Bibcode:2012PhLB..716...30C. doi:10.1016/j.physletb.2012年08月02日1.
  22. ^ ATLAS collaboration (2012). "Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC". Physics Letters B . 716 (1): 1–29. arXiv:1207.7214 . Bibcode:2012PhLB..716....1A. doi:10.1016/j.physletb.2012年08月02日0. S2CID 119169617.
  23. ^ Rini, Matteo (June 29, 2023). "Researchers Capture Gravitational-Wave Background with Pulsar "Antennae"". Physics Magazine. Vol. 16. p. 118. Bibcode:2023PhyOJ..16..118R. doi:10.1103/Physics.16.118 . Retrieved 2024年02月13日. Four PTA collaborations have delivered evidence for a stochastic background of nanohertz gravitational waves
  24. ^ Palivela, Ananya (June 30, 2023). "IceCube creates first image of Milky Way in neutrinos". Astronomy.com. Retrieved 2024年02月13日. IceCube Neutrino Observatory, this array has now allowed astronomers to image the Milky Way — not using light, but particles


Structure
Concepts
Theories and disciplines
Subatomic
Spaces and objects
Particles
Processes, interactions
Spacetime
Mathematics
Classic physics
Other namespaces
Related
Divisions
Approaches
Classical
Modern
Interdisciplinary
Related
Classical physics
Modern physics
Recent developments
On specific discoveries
By periods
By groups
Scientific disputes

AltStyle によって変換されたページ (->オリジナル) /