Jump to content
Wikipedia The Free Encyclopedia

Thinning (morphology)

From Wikipedia, the free encyclopedia

Thinning is the transformation of a digital image into a simplified, but topologically equivalent image. It is a type of topological skeleton, but computed using mathematical morphology operators.

Example

[edit ]

Let E = Z 2 {\displaystyle E=Z^{2}} {\displaystyle E=Z^{2}}, and consider the eight composite structuring elements, composed by:

C 1 = { ( 0 , 0 ) , ( 1 , 1 ) , ( 0 , 1 ) , ( 1 , 1 ) } {\displaystyle C_{1}=\{(0,0),(-1,-1),(0,-1),(1,-1)\}} {\displaystyle C_{1}=\{(0,0),(-1,-1),(0,-1),(1,-1)\}} and D 1 = { ( 1 , 1 ) , ( 0 , 1 ) , ( 1 , 1 ) } {\displaystyle D_{1}=\{(-1,1),(0,1),(1,1)\}} {\displaystyle D_{1}=\{(-1,1),(0,1),(1,1)\}},
C 2 = { ( 1 , 0 ) , ( 0 , 0 ) , ( 1 , 1 ) , ( 0 , 1 ) } {\displaystyle C_{2}=\{(-1,0),(0,0),(-1,-1),(0,-1)\}} {\displaystyle C_{2}=\{(-1,0),(0,0),(-1,-1),(0,-1)\}} and D 2 = { ( 0 , 1 ) , ( 1 , 1 ) , ( 1 , 0 ) } {\displaystyle D_{2}=\{(0,1),(1,1),(1,0)\}} {\displaystyle D_{2}=\{(0,1),(1,1),(1,0)\}}

and the three rotations of each by 90 o {\displaystyle 90^{o}} {\displaystyle 90^{o}}, 180 o {\displaystyle 180^{o}} {\displaystyle 180^{o}}, and 270 o {\displaystyle 270^{o}} {\displaystyle 270^{o}}. The corresponding composite structuring elements are denoted B 1 , , B 8 {\displaystyle B_{1},\ldots ,B_{8}} {\displaystyle B_{1},\ldots ,B_{8}}.

For any i between 1 and 8, and any binary image X, define

X B i = X ( X B i ) {\displaystyle X\otimes B_{i}=X\setminus (X\odot B_{i})} {\displaystyle X\otimes B_{i}=X\setminus (X\odot B_{i})},

where {\displaystyle \setminus } {\displaystyle \setminus } denotes the set-theoretical difference and {\displaystyle \odot } {\displaystyle \odot } denotes the hit-or-miss transform.

The thinning of an image A is obtained by cyclically iterating until convergence:

A B 1 B 2 B 8 B 1 B 2 {\displaystyle A\otimes B_{1}\otimes B_{2}\otimes \ldots \otimes B_{8}\otimes B_{1}\otimes B_{2}\otimes \ldots } {\displaystyle A\otimes B_{1}\otimes B_{2}\otimes \ldots \otimes B_{8}\otimes B_{1}\otimes B_{2}\otimes \ldots }.

Thickening

[edit ]

Thickening is the dual of thinning that is used to grow selected regions of foreground pixels. In most cases in image processing thickening is performed by thinning the background [1] thicken ( X , B i ) = X ( X B i ) {\displaystyle {\text{thicken}}(X,B_{i})=X\cup (X\odot B_{i})} {\displaystyle {\text{thicken}}(X,B_{i})=X\cup (X\odot B_{i})}

where {\displaystyle \cup } {\displaystyle \cup } denotes the set-theoretical difference and {\displaystyle \odot } {\displaystyle \odot } denotes the hit-or-miss transform, and B i {\displaystyle B_{i}} {\displaystyle B_{i}} is the structural element and X {\displaystyle X} {\displaystyle X} is the image being operated on.

References

[edit ]
  1. ^ Gonzalez, Rafael C. (2002). Digital image processing. Woods, Richard E. (Richard Eugene), 1954- (2nd ed.). Upper Saddle River, N.J. ISBN 0-201-18075-8. OCLC 48944550.{{cite book}}: CS1 maint: location missing publisher (link)

AltStyle によって変換されたページ (->オリジナル) /