TORRO scale
Find sources: "TORRO scale" – news · newspapers · books · scholar · JSTOR (December 2011) (Learn how and when to remove this message)
The TORRO tornado intensity scale (or T-Scale) is a scale measuring tornado intensity between T0 and T11. It was proposed by Terence Meaden of the Tornado and Storm Research Organisation (TORRO), a meteorological organisation in the United Kingdom, as an extension of the Beaufort scale.
History and derivation from Beaufort scale
[edit ]The scale was tested from 1972 to 1975 and was made public at a meeting of the Royal Meteorological Society in 1975. The scale sets T0 as the equivalent of 8 on the Beaufort scale and is related to the Beaufort scale (B), up to 12 on the Beaufort scale, by the formula:
- B = 2 (T + 4)
and conversely:
- T = B/2 - 4
The Beaufort scale was first introduced in 1805, and in 1921 quantified. It expresses the wind speed as faster than v in the formula:
TORRO scale formula
[edit ]Most UK tornadoes are T6 or below with the strongest known UK tornado estimated as a T9 (the 1666 Lincolnshire tornado). For comparison, the strongest detected winds in a United States tornado (during the 1999 Oklahoma tornado outbreak) would be T11 using the following formulas:
where v is wind speed and T is TORRO intensity number. Wind speed is defined as a 3-second gust at 10 m AGL.
Alternatively, the T-Scale formula may be expressed as:
or
Rating process and comparisons to Fujita scale
[edit ]TORRO claims it differs from the Fujita scale in that it is "purely" a wind speed scale, whereas the Fujita scale relies on damage for classification, but in practice, damage is utilised almost exclusively in both systems to infer intensity. That is because such a proxy for intensity is usually all that is available, although users of both scales would prefer direct, objective, quantitative measurements. The scale is primarily used in the United Kingdom whereas the Fujita scale has been the primary scale used in North America, continental Europe, and the rest of the world.
At the 2004 European Conference on Severe Storms, Dr. Meaden proposed a unification of the TORRO and Fujita scales as the Tornado Force or TF Scale.[1] In 2007 in the United States, the Enhanced Fujita Scale replaced the original Fujita Scale from 1971.[2] It made substantial improvements in standardizing damage descriptors through expanding and refining damage indicators and associated degrees of damage, as well as calibrated tornado wind speeds to better match the associated damage.[3] However, the EF Scale, having been designed based on construction practices in the United States, is not necessarily applicable across all regions.[4] [5] The EF-scale and variants thereof are officially used by the United States, Canada,[6] [7] France,[8] and Japan,[9] as well as unofficially in other countries, such as China.[10]
Unlike with the F scale, no analyses have been undertaken at all to establish the veracity and accuracy of the T scale damage descriptors. The scale was written in the early 1970s, and does not take into account changes such as the growth in weight of vehicles or the great reduction in numbers and change of type of railway locomotives,[citation needed ] and was written in an environment where tornadoes of F2 or stronger are extremely rare, so little or no first-hand investigation of actual damage at the upper end of the scale was possible. The TORRO scale has more graduations than the F scale which makes it arguably more useful for tornadoes on the lower end of the scale[citation needed ]; however, such accuracy and precision are not typically attainable in practice. Brooks and Doswell stated that "the problems associated with damage surveys and uncertainties associated with estimating wind speed from observed damage make highly precise assignments dubious".[11] In survey reports, Fujita ratings sometimes also have extra qualifications added ("minimal F2" or "upper-end F3 damage"), made by investigators who have experience of many similar tornadoes and relating to the fact that the F scale is a damage scale, not a wind speed scale.[citation needed ]
Tornadoes are rated after they have passed and have been examined, not whilst in progress. In rating the intensity of a tornado, both direct measurements and inferences from empirical observations of the effects of a tornado are used. Few anemometers are struck by a tornado, and even fewer survive, so there are very few in-situ measurements. Therefore, almost all ratings are obtained from remote sensing techniques or as proxies from damage surveys. Weather radar is used when available, and sometimes photogrammetry or videogrammetry estimates wind speed by measuring tracers in the vortex. In most cases, aerial and ground damage surveys of structures and vegetation are utilised, sometimes with engineering analysis. Also sometimes available are ground swirl patterns (cycloidal marks) left in the wake of a tornado. If an on site analysis is not possible, either for retrospective ratings or when personnel cannot reach a site, photographs, videos, or descriptions of damage may be utilised.
TORRO scale parameters
[edit ]The 12 categories for the TORRO scale are listed below, in order of increasing intensity. Although the wind speeds and photographic damage examples are updated, which are more or less still accurate.[citation needed ] However, for the actual TORRO scale in practice, damage indicators (the type of structure which has been damaged) are predominantly used in determining the tornado intensity.
(Estimated) Damage intensity Example of potential damage
Guttering pulled from some houses with some siding damage possible, older single glazed windows blown in or out of frames or smashed.
Significant damage to most tree types, some big branches twisted or snapped off, most small and shallow rooted trees whether in leaf or not are uprooted or snapped.
Wind turbines built from strong material suffer significant blade damage with blades ending up shredded or broken/ possibly suffering permanent deformation of tower/blades with winds on the upper bounds of T5.
Strong framed wooden buildings/weak brick masonry buildings receive more significant damage than T4 though walls on ground floor will probably remain, some wall damage on second/upper floor connected to roof is likely though with one or two walls blowing down/collapsing, some/significant damage likely inside of these buildings. Stronger brick masonry homes may lose a few rows of bricks on second floor, though overall structure below roof itself largely standing with bottom floor relatively intact except for doors and windows, the roof mostly or entirely blown/torn off. The oldest, weakest buildings may collapse completely.
Lighter vehicles thrown upto a mile in some cases, heavy vehicles such as buses lofted and tossed tens of metres away, trains derailed/blown over while in motion.
In terms of man made objects, only the very heaviest ones for example locomotives/trains weighing hundreds of tons and the strongest of buildings made low to the ground with specific very aerodynamic designs and incredibly thick load bearing steel concrete walls with no windows/discernible roof will "survive" a tornado of this strength, survival would be reliant on these specialised structures or out of path of the tornado itself. But the precise design needed and possibility of it actually successfully providing adequate safety during such a tornado is very speculative for now.
See also
[edit ]- Saffir-Simpson Hurricane Scale
- Tornado intensity and damage
- Wind engineering
- List of tornadoes and tornado outbreaks
References
[edit ]- ^ Meaden, Terence; TORRO members (2004). "Tornado Force or TF Scale". Tornado and Storm Research Organisation. Archived from the original on 2010年04月30日.
- ^ Grazulis, Tom (1999). "The Fujita Scale of Tornado Intensity". The Tornado Project. Archived from the original on 2011年12月30日. Retrieved 2011年12月31日.
- ^ Godfrey, Elaine (2008). "The Enhanced Fujita Tornado Scale". National Climatic Data Center. Retrieved 2011年12月31日.
- ^ IF Scale Steering Group. "The International Fujita (IF) Scale: Tornado and Wind Damage Assessment Guide" (PDF). European Severe Storms Laboratory .
- ^ Nucuta, C.; Timis, C.; Butiu, C.; Scridonesi, O. (2011). "Assessment of Tornados with the Enhanced Fujita Scale in Romania". Babes Bolyai University Faculty of Geography: 568–575. ProQuest 1318799643.
- ^ "Enhanced Fujita Scale (EF-Scale)". Environment Canada. 10 May 2013. Retrieved 19 April 2014.
- ^ Measuring tornadoes: F-scale vs. EF-scale Archived April 9, 2012, at the Wayback Machine
- ^ KERAUNOS. "Intensité des tornades : l'échelle de Fujita améliorée".
- ^ Suzuki, Shota; Tanaka, Yoshinobu. "The Japanese Enhanced Fujita Scale: Its Development and Implementation" (PDF). Japan Meteorological Agency.
- ^ Chen, Jiayi; Cai, Xuhui; Wang, Hongyu; Kang, Ling; Zhang, Hongshen; Song, Yu; Zhu, Hao; Zheng, Wei; Li, Fengju (April 2018). "Tornado climatology of China". International Journal of Climatology. 38 (5): 2478–2489. Bibcode:2018IJCli..38.2478C. doi:10.1002/joc.5369. ISSN 0899-8418.
- ^ Brooks, Harold; Charles A. Doswell III (2001). "Some aspects of the international climatology of tornadoes by damage classification". Atmospheric Research. 56 (1–4): 191–201. Bibcode:2001AtmRe..56..191B. doi:10.1016/S0169-8095(00)00098-3.
- Grazulis, Thomas P. (1993). Significant Tornadoes 1680-1991, A Chronology and Analysis of Events. St. Johnsbury, VT: The Tornado Project of Environmental Films. ISBN 1-879362-03-1.
- Meaden, G. T. (1976). "Tornadoes in Britain: Their intensities and distribution in space and time". Journal of Meteorology . 1 (8). UK: 242–51.
- Meaden, G. T. (1985). "A study of tornadoes in Britain, with assessments of the general tornado risk potential and the specific risk potential at particular regional sites". Journal of Meteorology . 8 (79). UK: 151–3.