Jump to content
Wikipedia The Free Encyclopedia

TCP/IP stack fingerprinting

From Wikipedia, the free encyclopedia
Remote detection of the characteristics of a TCP/IP stack
Passive OS Fingerprinting method and diagram.

TCP/IP stack fingerprinting is the remote detection of the characteristics of a TCP/IP stack implementation. The combination of parameters may then be used to infer the remote machine's operating system (aka, OS fingerprinting), or incorporated into a device fingerprint.

TCP/IP Fingerprint Specifics

[edit ]

Certain parameters within the TCP protocol definition are left up to the implementation. Different operating systems, and different versions of the same operating system, set different defaults for these values. By collecting and examining these values, one may differentiate among various operating systems and implementations of TCP/IP. The TCP/IP fields that may vary include the following:

  • Initial packet size (16 bits)
  • Initial TTL (8 bits)
  • Window size (16 bits)
  • Max segment size (16 bits)
  • Window scaling value (8 bits)
  • "don't fragment" flag (1 bit)
  • "sackOK" flag (1 bit)
  • "nop" flag (1 bit)

These values may be combined to form a 67-bit signature, or fingerprint, for the target machine.[1] Just inspecting the Initial TTL and window size fields is often enough to successfully identify an operating system, which eases the task of performing manual OS fingerprinting.[2]

Protection against and detecting fingerprinting

[edit ]

Protection against the fingerprint doorway to attack is achieved by limiting the type and amount of traffic a defensive system responds to. Examples include blocking address masks and timestamps from outgoing ICMP control-message traffic, and blocking ICMP echo replies. A security tool can alert to potential fingerprinting: it can match another machine as having a fingerprinter configuration by detecting its fingerprint.[3]

Disallowing TCP/IP fingerprinting provides protection from vulnerability scanners looking to target machines running a certain operating system. Fingerprinting facilitates attacks. Blocking those ICMP messages is only one of an array of defenses required for full protection against attacks.[4]

Targeting the ICMP datagram, an obfuscator running on top of IP in the internet layer acts as a "scrubbing tool" to confuse the TCP/IP fingerprinting data. These exist for Microsoft Windows,[5] Linux [6] and FreeBSD.[7]

Fingerprinting tools

[edit ]

A list of TCP/OS Fingerprinting Tools

  • Zardaxt.py [8] – Passive open-source TCP/IP Fingerprinting Tool.
  • Ettercap – passive TCP/IP stack fingerprinting.
  • Nmap – comprehensive active stack fingerprinting.
  • p0f – comprehensive passive TCP/IP stack fingerprinting.
  • NetSleuth – free passive fingerprinting and analysis tool
  • PacketFence [9] – open source NAC with passive DHCP fingerprinting.
  • Satori – passive CDP, DHCP, ICMP, HPSP, HTTP, TCP/IP and other stack fingerprinting.
  • SinFP – single-port active/passive fingerprinting.
  • XProbe2 – active TCP/IP stack fingerprinting.
  • queso - well-known tool from the late 1990s which is no longer being updated for modern operating systems

References

[edit ]
  1. ^ Chuvakin A. and Peikari, C: "Security Warrior.", page 229. O'Reilly Media Inc., 2004.
  2. ^ "Passive OS Fingerprinting, NETRESEC Network Security Blog". Netresec.com. 2011年11月05日. Retrieved 2011年11月25日.
  3. ^ "iplog" . Retrieved 2011年11月25日.
  4. ^ "OS detection not key to penetration". Seclists.org. Retrieved 2011年11月25日.
  5. ^ "OSfuscate". Irongeek.com. 2008年09月30日. Retrieved 2011年11月25日.
  6. ^ Carl-Daniel Hailfinger, carldani@4100XCDT. "IPPersonality". Ippersonality.sourceforge.net. Retrieved 2011年11月25日.{{cite web}}: CS1 maint: numeric names: authors list (link)
  7. ^ "Defeating TCP/IP stack fingerprinting". Usenix.org. 2002年01月29日. Retrieved 2011年11月25日.
  8. ^ "Zardaxt.py". Github. 2021年11月25日. Retrieved 2021年11月25日.
  9. ^ "PacketFence". PacketFence. 2011年11月21日. Retrieved 2011年11月25日.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /