Spinor bundle
In differential geometry, given a spin structure on an {\displaystyle n}-dimensional orientable Riemannian manifold {\displaystyle (M,g),,円} one defines the spinor bundle to be the complex vector bundle {\displaystyle \pi _{\mathbf {S} }\colon {\mathbf {S} }\to M,円} associated to the corresponding principal bundle {\displaystyle \pi _{\mathbf {P} }\colon {\mathbf {P} }\to M,円} of spin frames over {\displaystyle M} and the spin representation of its structure group {\displaystyle {\mathrm {Spin} }(n),円} on the space of spinors {\displaystyle \Delta _{n}}.
A section of the spinor bundle {\displaystyle {\mathbf {S} },円} is called a spinor field.
Formal definition
[edit ]Let {\displaystyle ({\mathbf {P} },F_{\mathbf {P} })} be a spin structure on a Riemannian manifold {\displaystyle (M,g),,円}that is, an equivariant lift of the oriented orthonormal frame bundle {\displaystyle \mathrm {F} _{SO}(M)\to M} with respect to the double covering {\displaystyle \rho \colon {\mathrm {Spin} }(n)\to {\mathrm {SO} }(n)} of the special orthogonal group by the spin group.
The spinor bundle {\displaystyle {\mathbf {S} },円} is defined [1] to be the complex vector bundle {\displaystyle {\mathbf {S} }={\mathbf {P} }\times _{\kappa }\Delta _{n},円} associated to the spin structure {\displaystyle {\mathbf {P} }} via the spin representation {\displaystyle \kappa \colon {\mathrm {Spin} }(n)\to {\mathrm {U} }(\Delta _{n}),,円} where {\displaystyle {\mathrm {U} }({\mathbf {W} }),円} denotes the group of unitary operators acting on a Hilbert space {\displaystyle {\mathbf {W} }.,円} The spin representation {\displaystyle \kappa } is a faithful and unitary representation of the group {\displaystyle {\mathrm {Spin} }(n).}[2]
See also
[edit ]- Clifford bundle
- Clifford module bundle
- Orthonormal frame bundle
- Spin geometry
- Spinor
- Spinor representation
Notes
[edit ]- ^ Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1 page 53
- ^ Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1 pages 20 and 24
Further reading
[edit ]- Lawson, H. Blaine; Michelsohn, Marie-Louise (1989). Spin Geometry. Princeton University Press. ISBN 978-0-691-08542-5.
- Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1
|
This differential geometry-related article is a stub. You can help Wikipedia by expanding it.