Recession cone
In mathematics, especially convex analysis, the recession cone of a set {\displaystyle A} is a cone containing all vectors such that {\displaystyle A} recedes in that direction. That is, the set extends outward in all the directions given by the recession cone.[1]
Mathematical definition
[edit ]Given a nonempty set {\displaystyle A\subset X} for some vector space {\displaystyle X}, then the recession cone {\displaystyle \operatorname {recc} (A)} is given by
- {\displaystyle \operatorname {recc} (A)=\{y\in X:\forall x\in A,\forall \lambda \geq 0:x+\lambda y\in A\}.}[2]
If {\displaystyle A} is additionally a convex set then the recession cone can equivalently be defined by
- {\displaystyle \operatorname {recc} (A)=\{y\in X:\forall x\in A:x+y\in A\}.}[3]
If {\displaystyle A} is a nonempty closed convex set then the recession cone can equivalently be defined as
- {\displaystyle \operatorname {recc} (A)=\bigcap _{t>0}t(A-a)} for any choice of {\displaystyle a\in A.}[3]
Properties
[edit ]- If {\displaystyle A} is a nonempty set then {\displaystyle 0\in \operatorname {recc} (A)}.
- If {\displaystyle A} is a nonempty convex set then {\displaystyle \operatorname {recc} (A)} is a convex cone.[3]
- If {\displaystyle A} is a nonempty closed convex subset of a finite-dimensional Hausdorff space (e.g. {\displaystyle \mathbb {R} ^{d}}), then {\displaystyle \operatorname {recc} (A)=\{0\}} if and only if {\displaystyle A} is bounded.[1] [3]
- If {\displaystyle A} is a nonempty set then {\displaystyle A+\operatorname {recc} (A)=A} where the sum denotes Minkowski addition.
Relation to asymptotic cone
[edit ]The asymptotic cone for {\displaystyle C\subseteq X} is defined by
- {\displaystyle C_{\infty }=\{x\in X:\exists (t_{i})_{i\in I}\subset (0,\infty ),\exists (x_{i})_{i\in I}\subset C:t_{i}\to 0,t_{i}x_{i}\to x\}.}[4] [5]
By the definition it can easily be shown that {\displaystyle \operatorname {recc} (C)\subseteq C_{\infty }.}[4]
In a finite-dimensional space, then it can be shown that {\displaystyle C_{\infty }=\operatorname {recc} (C)} if {\displaystyle C} is nonempty, closed and convex.[5] In infinite-dimensional spaces, then the relation between asymptotic cones and recession cones is more complicated, with properties for their equivalence summarized in.[6]
Sum of closed sets
[edit ]- Dieudonné's theorem: Let nonempty closed convex sets {\displaystyle A,B\subset X} a locally convex space, if either {\displaystyle A} or {\displaystyle B} is locally compact and {\displaystyle \operatorname {recc} (A)\cap \operatorname {recc} (B)} is a linear subspace, then {\displaystyle A-B} is closed.[7] [3]
- Let nonempty closed convex sets {\displaystyle A,B\subset \mathbb {R} ^{d}} such that for any {\displaystyle y\in \operatorname {recc} (A)\backslash \{0\}} then {\displaystyle -y\not \in \operatorname {recc} (B)}, then {\displaystyle A+B} is closed.[1] [4]
See also
[edit ]References
[edit ]- ^ a b c Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. pp. 60–76. ISBN 978-0-691-01586-6.
- ^ Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 978-0-387-29570-1.
- ^ a b c d e Zălinescu, Constantin (2002). Convex analysis in general vector spaces . River Edge, NJ: World Scientific Publishing Co., Inc. pp. 6–7. ISBN 981-238-067-1. MR 1921556.
- ^ a b c Kim C. Border. "Sums of sets, etc" (PDF). Retrieved March 7, 2012.
- ^ a b Alfred Auslender; M. Teboulle (2003). Asymptotic cones and functions in optimization and variational inequalities . Springer. pp. 25–80. ISBN 978-0-387-95520-9.
- ^ Zălinescu, Constantin (1993). "Recession cones and asymptotically compact sets". Journal of Optimization Theory and Applications. 77 (1). Springer Netherlands: 209–220. doi:10.1007/bf00940787. ISSN 0022-3239. S2CID 122403313.
- ^ J. Dieudonné (1966). "Sur la séparation des ensembles convexes". Math. Ann.. 163: 1–3. doi:10.1007/BF02052480. S2CID 119742919.