Jump to content
Wikipedia The Free Encyclopedia

Rademacher–Menchov theorem

From Wikipedia, the free encyclopedia

In mathematical analysis, the Rademacher–Menchov theorem, introduced by Rademacher (1922) and Menchoff (1923), gives a sufficient condition for a series of orthogonal functions on an interval to converge almost everywhere.

Statement

[edit ]

If the coefficients cν of a series of bounded orthogonal functions on an interval satisfy

| c ν | 2 log ( ν ) 2 < {\displaystyle \sum |c_{\nu }|^{2}\log(\nu )^{2}<\infty } {\displaystyle \sum |c_{\nu }|^{2}\log(\nu )^{2}<\infty }

then the series converges almost everywhere.

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /