Quot scheme
In algebraic geometry, the Quot scheme is a scheme parametrizing sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme {\displaystyle \operatorname {Quot} _{F}(X)} whose set of T-points {\displaystyle \operatorname {Quot} _{F}(X)(T)=\operatorname {Mor} _{S}(T,\operatorname {Quot} _{F}(X))} is the set of isomorphism classes of the quotients of {\displaystyle F\times _{S}T} that are flat over T. The notion was introduced by Alexander Grothendieck.[1]
It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme. (In fact, taking F to be the structure sheaf {\displaystyle {\mathcal {O}}_{X}} gives a Hilbert scheme.)
Definition
[edit ]For a scheme of finite type {\displaystyle X\to S} over a Noetherian base scheme {\displaystyle S}, and a coherent sheaf {\displaystyle {\mathcal {E}}\in {\text{Coh}}(X)}, there is a functor[2] [3]
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}:(Sch/S)^{op}\to {\text{Sets}}}
sending {\displaystyle T\to S} to
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}(T)=\left\{({\mathcal {F}},q):{\begin{matrix}{\mathcal {F}}\in {\text{QCoh}}(X_{T})\\{\mathcal {F}}\ {\text{finitely presented over}}\ X_{T}\\{\text{Supp}}({\mathcal {F}}){\text{ is proper over }}T\\{\mathcal {F}}{\text{ is flat over }}T\\q:{\mathcal {E}}_{T}\to {\mathcal {F}}{\text{ surjective}}\end{matrix}}\right\}/\sim }
where {\displaystyle X_{T}=X\times _{S}T} and {\displaystyle {\mathcal {E}}_{T}=pr_{X}^{*}{\mathcal {E}}} under the projection {\displaystyle pr_{X}:X_{T}\to X}. There is an equivalence relation given by {\displaystyle ({\mathcal {F}},q)\sim ({\mathcal {F}}',q')} if there is an isomorphism {\displaystyle {\mathcal {F}}\to {\mathcal {F}}'} commuting with the two projections {\displaystyle q,q'}; that is,
{\displaystyle {\begin{matrix}{\mathcal {E}}_{T}&{\xrightarrow {q}}&{\mathcal {F}}\\\downarrow {}&&\downarrow \\{\mathcal {E}}_{T}&{\xrightarrow {q'}}&{\mathcal {F}}'\end{matrix}}}
is a commutative diagram for {\displaystyle {\mathcal {E}}_{T}{\xrightarrow {id}}{\mathcal {E}}_{T}} . Alternatively, there is an equivalent condition of holding {\displaystyle {\text{ker}}(q)={\text{ker}}(q')}. This is called the quot functor which has a natural stratification into a disjoint union of subfunctors, each of which is represented by a projective {\displaystyle S}-scheme called the quot scheme associated to a Hilbert polynomial {\displaystyle \Phi }.
Hilbert polynomial
[edit ]For a relatively very ample line bundle {\displaystyle {\mathcal {L}}\in {\text{Pic}}(X)}[4] and any closed point {\displaystyle s\in S} there is a function {\displaystyle \Phi _{\mathcal {F}}:\mathbb {N} \to \mathbb {N} } sending
{\displaystyle m\mapsto \chi ({\mathcal {F}}_{s}(m))=\sum _{i=0}^{n}(-1)^{i}{\text{dim}}_{\kappa (s)}H^{i}(X,{\mathcal {F}}_{s}\otimes {\mathcal {L}}_{s}^{\otimes m})}
which is a polynomial for {\displaystyle m>>0}. This is called the Hilbert polynomial which gives a natural stratification of the quot functor. Again, for {\displaystyle {\mathcal {L}}} fixed there is a disjoint union of subfunctors
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}=\coprod _{\Phi \in \mathbb {Q} [t]}{\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}}
where
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}(T)=\left\{({\mathcal {F}},q)\in {\mathcal {Quot}}_{{\mathcal {E}}/X/S}(T):\Phi _{\mathcal {F}}=\Phi \right\}}
The Hilbert polynomial {\displaystyle \Phi _{\mathcal {F}}} is the Hilbert polynomial of {\displaystyle {\mathcal {F}}_{t}} for closed points {\displaystyle t\in T}. Note the Hilbert polynomial is independent of the choice of very ample line bundle {\displaystyle {\mathcal {L}}}.
Grothendieck's existence theorem
[edit ]It is a theorem of Grothendieck's that the functors {\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}} are all representable by projective schemes {\displaystyle {\text{Quot}}_{{\mathcal {E}}/X/S}^{\Phi }} over {\displaystyle S}.
Examples
[edit ]Grassmannian
[edit ]The Grassmannian {\displaystyle G(n,k)} of {\displaystyle k}-planes in an {\displaystyle n}-dimensional vector space has a universal quotient
{\displaystyle {\mathcal {O}}_{G(n,k)}^{\oplus k}\to {\mathcal {U}}}
where {\displaystyle {\mathcal {U}}_{x}} is the {\displaystyle k}-plane represented by {\displaystyle x\in G(n,k)}. Since {\displaystyle {\mathcal {U}}} is locally free and at every point it represents a {\displaystyle k}-plane, it has the constant Hilbert polynomial {\displaystyle \Phi (\lambda )=k}. This shows {\displaystyle G(n,k)} represents the quot functor
{\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{G(n,k)}^{\oplus (n)}/{\text{Spec}}(\mathbb {Z} )/{\text{Spec}}(\mathbb {Z} )}^{k,{\mathcal {O}}_{G(n,k)}}}
Projective space
[edit ]As a special case, we can construct the project space {\displaystyle \mathbb {P} ({\mathcal {E}})} as the quot scheme
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{1,{\mathcal {O}}_{X}}}
for a sheaf {\displaystyle {\mathcal {E}}} on an {\displaystyle S}-scheme {\displaystyle X}.
Hilbert scheme
[edit ]The Hilbert scheme is a special example of the quot scheme. Notice a subscheme {\displaystyle Z\subset X} can be given as a projection
{\displaystyle {\mathcal {O}}_{X}\to {\mathcal {O}}_{Z}}
and a flat family of such projections parametrized by a scheme {\displaystyle T\in Sch/S} can be given by
{\displaystyle {\mathcal {O}}_{X_{T}}\to {\mathcal {F}}}
Since there is a hilbert polynomial associated to {\displaystyle Z}, denoted {\displaystyle \Phi _{Z}}, there is an isomorphism of schemes
{\displaystyle {\text{Quot}}_{{\mathcal {O}}_{X}/X/S}^{\Phi _{Z}}\cong {\text{Hilb}}_{X/S}^{\Phi _{Z}}}
Example of a parameterization
[edit ]If {\displaystyle X=\mathbb {P} _{k}^{n}} and {\displaystyle S={\text{Spec}}(k)} for an algebraically closed field, then a non-zero section {\displaystyle s\in \Gamma ({\mathcal {O}}(d))} has vanishing locus {\displaystyle Z=Z(s)} with Hilbert polynomial
{\displaystyle \Phi _{Z}(\lambda )={\binom {n+\lambda }{n}}-{\binom {n-d+\lambda }{n}}}
Then, there is a surjection
{\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}
with kernel {\displaystyle {\mathcal {O}}(-d)}. Since {\displaystyle s} was an arbitrary non-zero section, and the vanishing locus of {\displaystyle a\cdot s} for {\displaystyle a\in k^{*}} gives the same vanishing locus, the scheme {\displaystyle Q=\mathbb {P} (\Gamma ({\mathcal {O}}(d)))} gives a natural parameterization of all such sections. There is a sheaf {\displaystyle {\mathcal {E}}} on {\displaystyle X\times Q} such that for any {\displaystyle [s]\in Q}, there is an associated subscheme {\displaystyle Z\subset X} and surjection {\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}. This construction represents the quot functor
{\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}/\mathbb {P} ^{n}/{\text{Spec}}(k)}^{\Phi _{Z}}}
Quadrics in the projective plane
[edit ]If {\displaystyle X=\mathbb {P} ^{2}} and {\displaystyle s\in \Gamma ({\mathcal {O}}(2))}, the Hilbert polynomial is
{\displaystyle {\begin{aligned}\Phi _{Z}(\lambda )&={\binom {2+\lambda }{2}}-{\binom {2-2+\lambda }{2}}\\&={\frac {(\lambda +2)(\lambda +1)}{2}}-{\frac {\lambda (\lambda -1)}{2}}\\&={\frac {\lambda ^{2}+3\lambda +2}{2}}-{\frac {\lambda ^{2}-\lambda }{2}}\\&={\frac {2\lambda +2}{2}}\\&=\lambda +1\end{aligned}}}
and
{\displaystyle {\text{Quot}}_{{\mathcal {O}}/\mathbb {P} ^{2}/{\text{Spec}}(k)}^{\lambda +1}\cong \mathbb {P} (\Gamma ({\mathcal {O}}(2)))\cong \mathbb {P} ^{5}}
The universal quotient over {\displaystyle \mathbb {P} ^{5}\times \mathbb {P} ^{2}} is given by
{\displaystyle {\mathcal {O}}\to {\mathcal {U}}}
where the fiber over a point {\displaystyle [Z]\in {\text{Quot}}_{{\mathcal {O}}/\mathbb {P} ^{2}/{\text{Spec}}(k)}^{\lambda +1}} gives the projective morphism
{\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}
For example, if {\displaystyle [Z]=[a_{0}:a_{1}:a_{2}:a_{3}:a_{4}:a_{5}]} represents the coefficients of
{\displaystyle f=a_{0}x^{2}+a_{1}xy+a_{2}xz+a_{3}y^{2}+a_{4}yz+a_{5}z^{2}}
then the universal quotient over {\displaystyle [Z]} gives the short exact sequence
{\displaystyle 0\to {\mathcal {O}}(-2){\xrightarrow {f}}{\mathcal {O}}\to {\mathcal {O}}_{Z}\to 0}
Semistable vector bundles on a curve
[edit ]Semistable vector bundles on a curve {\displaystyle C} of genus {\displaystyle g} can equivalently be described as locally free sheaves of finite rank. Such locally free sheaves {\displaystyle {\mathcal {F}}} of rank {\displaystyle n} and degree {\displaystyle d} have the properties[5]
- {\displaystyle H^{1}(C,{\mathcal {F}})=0}
- {\displaystyle {\mathcal {F}}} is generated by global sections
for {\displaystyle d>n(2g-1)}. This implies there is a surjection
{\displaystyle H^{0}(C,{\mathcal {F}})\otimes {\mathcal {O}}_{C}\cong {\mathcal {O}}_{C}^{\oplus N}\to {\mathcal {F}}}
Then, the quot scheme {\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{C}^{\oplus N}/{\mathcal {C}}/\mathbb {Z} }} parametrizes all such surjections. Using the Grothendieck–Riemann–Roch theorem the dimension {\displaystyle N} is equal to
{\displaystyle \chi ({\mathcal {F}})=d+n(1-g)}
For a fixed line bundle {\displaystyle {\mathcal {L}}} of degree {\displaystyle 1} there is a twisting {\displaystyle {\mathcal {F}}(m)={\mathcal {F}}\otimes {\mathcal {L}}^{\otimes m}}, shifting the degree by {\displaystyle nm}, so
{\displaystyle \chi ({\mathcal {F}}(m))=mn+d+n(1-g)}[5]
giving the Hilbert polynomial
{\displaystyle \Phi _{\mathcal {F}}(\lambda )=n\lambda +d+n(1-g)}
Then, the locus of semi-stable vector bundles is contained in
{\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{C}^{\oplus N}/{\mathcal {C}}/\mathbb {Z} }^{\Phi _{\mathcal {F}},{\mathcal {L}}}}
which can be used to construct the moduli space {\displaystyle {\mathcal {M}}_{C}(n,d)} of semistable vector bundles using a GIT quotient.[5]
See also
[edit ]References
[edit ]- ^ Grothendieck, Alexander. Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert. Séminaire Bourbaki : années 1960/61, exposés 205-222, Séminaire Bourbaki, no. 6 (1961), Talk no. 221, p. 249-276
- ^ Nitsure, Nitin (2005). "Construction of Hilbert and Quot Schemes". Fundamental algebraic geometry: Grothendieck’s FGA explained. Mathematical Surveys and Monographs. Vol. 123. American Mathematical Society. pp. 105–137. arXiv:math/0504590 . ISBN 978-0-8218-4245-4.
- ^ Altman, Allen B.; Kleiman, Steven L. (1980). "Compactifying the Picard scheme". Advances in Mathematics . 35 (1): 50–112. doi:10.1016/0001-8708(80)90043-2 . ISSN 0001-8708.
- ^ Meaning a basis {\displaystyle s_{i}} for the global sections {\displaystyle \Gamma (X,{\mathcal {L}})} defines an embedding {\displaystyle \mathbb {s} :X\to \mathbb {P} _{S}^{N}} for {\displaystyle N={\text{dim}}(\Gamma (X,{\mathcal {L}}))}
- ^ a b c Hoskins, Victoria. "Moduli Problems and Geometric Invariant Theory" (PDF). pp. 68, 74–85. Archived (PDF) from the original on 1 March 2020.