Quadratic form (statistics)
Find sources: "Quadratic form" statistics – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message)
In multivariate statistics, if {\displaystyle \varepsilon } is a vector of {\displaystyle n} random variables, and {\displaystyle \Lambda } is an {\displaystyle n}-dimensional symmetric matrix, then the scalar quantity {\displaystyle \varepsilon ^{T}\Lambda \varepsilon } is known as a quadratic form in {\displaystyle \varepsilon }.
Expectation
[edit ]It can be shown that[1]
- {\displaystyle \operatorname {E} \left[\varepsilon ^{T}\Lambda \varepsilon \right]=\operatorname {tr} \left[\Lambda \Sigma \right]+\mu ^{T}\Lambda \mu }
where {\displaystyle \mu } and {\displaystyle \Sigma } are the expected value and variance-covariance matrix of {\displaystyle \varepsilon }, respectively, and tr denotes the trace of a matrix. This result only depends on the existence of {\displaystyle \mu } and {\displaystyle \Sigma }; in particular, normality of {\displaystyle \varepsilon } is not required.
A book treatment of the topic of quadratic forms in random variables is that of Mathai and Provost.[2]
Proof
[edit ]Since the quadratic form is a scalar quantity, {\displaystyle \varepsilon ^{T}\Lambda \varepsilon =\operatorname {tr} (\varepsilon ^{T}\Lambda \varepsilon )}.
Next, by the cyclic property of the trace operator,
- {\displaystyle \operatorname {E} [\operatorname {tr} (\varepsilon ^{T}\Lambda \varepsilon )]=\operatorname {E} [\operatorname {tr} (\Lambda \varepsilon \varepsilon ^{T})].}
Since the trace operator is a linear combination of the components of the matrix, it therefore follows from the linearity of the expectation operator that
- {\displaystyle \operatorname {E} [\operatorname {tr} (\Lambda \varepsilon \varepsilon ^{T})]=\operatorname {tr} (\Lambda \operatorname {E} (\varepsilon \varepsilon ^{T})).}
A standard property of variances then tells us that this is
- {\displaystyle \operatorname {tr} (\Lambda (\Sigma +\mu \mu ^{T})).}
Applying the cyclic property of the trace operator again, we get
- {\displaystyle \operatorname {tr} (\Lambda \Sigma )+\operatorname {tr} (\Lambda \mu \mu ^{T})=\operatorname {tr} (\Lambda \Sigma )+\operatorname {tr} (\mu ^{T}\Lambda \mu )=\operatorname {tr} (\Lambda \Sigma )+\mu ^{T}\Lambda \mu .}
Variance in the Gaussian case
[edit ]In general, the variance of a quadratic form depends greatly on the distribution of {\displaystyle \varepsilon }. However, if {\displaystyle \varepsilon } does follow a multivariate normal distribution, the variance of the quadratic form becomes particularly tractable. Assume for the moment that {\displaystyle \Lambda } is a symmetric matrix. Then,
- {\displaystyle \operatorname {var} \left[\varepsilon ^{T}\Lambda \varepsilon \right]=2\operatorname {tr} \left[\Lambda \Sigma \Lambda \Sigma \right]+4\mu ^{T}\Lambda \Sigma \Lambda \mu }.[3]
In fact, this can be generalized to find the covariance between two quadratic forms on the same {\displaystyle \varepsilon } (once again, {\displaystyle \Lambda _{1}} and {\displaystyle \Lambda _{2}} must both be symmetric):
- {\displaystyle \operatorname {cov} \left[\varepsilon ^{T}\Lambda _{1}\varepsilon ,\varepsilon ^{T}\Lambda _{2}\varepsilon \right]=2\operatorname {tr} \left[\Lambda _{1}\Sigma \Lambda _{2}\Sigma \right]+4\mu ^{T}\Lambda _{1}\Sigma \Lambda _{2}\mu }.[4]
In addition, a quadratic form such as this follows a generalized chi-squared distribution.
Computing the variance in the non-symmetric case
[edit ]The case for general {\displaystyle \Lambda } can be derived by noting that
- {\displaystyle \varepsilon ^{T}\Lambda ^{T}\varepsilon =\varepsilon ^{T}\Lambda \varepsilon }
so
- {\displaystyle \varepsilon ^{T}{\tilde {\Lambda }}\varepsilon =\varepsilon ^{T}\left(\Lambda +\Lambda ^{T}\right)\varepsilon /2}
is a quadratic form in the symmetric matrix {\displaystyle {\tilde {\Lambda }}=\left(\Lambda +\Lambda ^{T}\right)/2}, so the mean and variance expressions are the same, provided {\displaystyle \Lambda } is replaced by {\displaystyle {\tilde {\Lambda }}} therein.
Examples of quadratic forms
[edit ]In the setting where one has a set of observations {\displaystyle y} and an operator matrix {\displaystyle H}, then the residual sum of squares can be written as a quadratic form in {\displaystyle y}:
- {\displaystyle {\textrm {RSS}}=y^{T}(I-H)^{T}(I-H)y.}
For procedures where the matrix {\displaystyle H} is symmetric and idempotent, and the errors are Gaussian with covariance matrix {\displaystyle \sigma ^{2}I}, {\displaystyle {\textrm {RSS}}/\sigma ^{2}} has a chi-squared distribution with {\displaystyle k} degrees of freedom and noncentrality parameter {\displaystyle \lambda }, where
- {\displaystyle k=\operatorname {tr} \left[(I-H)^{T}(I-H)\right]}
- {\displaystyle \lambda =\mu ^{T}(I-H)^{T}(I-H)\mu /2}
may be found by matching the first two central moments of a noncentral chi-squared random variable to the expressions given in the first two sections. If {\displaystyle Hy} estimates {\displaystyle \mu } with no bias, then the noncentrality {\displaystyle \lambda } is zero and {\displaystyle {\textrm {RSS}}/\sigma ^{2}} follows a central chi-squared distribution.
See also
[edit ]References
[edit ]- ^ Bates, Douglas. "Quadratic Forms of Random Variables" (PDF). STAT 849 lectures. Retrieved August 21, 2011.
- ^ Mathai, A. M. & Provost, Serge B. (1992). Quadratic Forms in Random Variables. CRC Press. p. 424. ISBN 978-0824786915.
- ^ Rencher, Alvin C.; Schaalje, G. Bruce. (2008). Linear models in statistics (2nd ed.). Hoboken, N.J.: Wiley-Interscience. ISBN 9780471754985. OCLC 212120778.
- ^ Graybill, Franklin A. Matrices with applications in statistics (2. ed.). Wadsworth: Belmont, Calif. p. 367. ISBN 0534980384.