Jump to content
Wikipedia The Free Encyclopedia

PyMC

From Wikipedia, the free encyclopedia
(Redirected from PyMC3)
Probabilistic programming library for the Python programming language
PyMC
Other namesPyMC2, PyMC3
Original author PyMC Development Team
Initial releaseApril 6, 2012 (2012年04月06日)
Stable release
5.26.1[1]  Edit this on Wikidata / 17 October 2025; 33 days ago (17 October 2025)
Repository https://github.com/pymc-devs/pymc
Written inPython
Operating system Unix-like, Mac OS X, Microsoft Windows
Platform Intel x86 – 32-bit, x64
Type Statistical package
License Apache License, Version 2.0
Websitewww.pymc.io

PyMC (formerly known as PyMC3) is a probabilistic programming library for Python. It can be used for Bayesian statistical modeling and probabilistic machine learning.

PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.[2] [3] [4] [5] [6] It is a rewrite from scratch of the previous version of the PyMC software.[7] Unlike PyMC2, which had used Fortran extensions for performing computations, PyMC relies on PyTensor, a Python library that allows defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. From version 3.8 PyMC relies on ArviZ to handle plotting, diagnostics, and statistical checks. PyMC and Stan are the two most popular probabilistic programming tools.[8] PyMC is an open source project, developed by the community and has been fiscally sponsored by NumFOCUS.[9]

PyMC has been used to solve inference problems in several scientific domains, including astronomy,[10] [11] epidemiology,[12] [13] molecular biology,[14] crystallography,[15] [16] chemistry,[17] ecology[18] [19] and psychology.[20] Previous versions of PyMC were also used widely, for example in climate science,[21] public health,[22] neuroscience,[23] and parasitology.[24] [25]

After Theano announced plans to discontinue development in 2017,[26] the PyMC team evaluated TensorFlow Probability as a computational backend,[27] but decided in 2020 to fork Theano under the name Aesara.[28] Large parts of the Theano codebase have been refactored and compilation through JAX [29] and Numba were added. The PyMC team has released the revised computational backend under the name PyTensor and continues the development of PyMC.[30]

Inference engines

[edit ]

PyMC implements non-gradient-based and gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference and stochastic, gradient-based variational Bayesian methods for approximate Bayesian inference.

See also

[edit ]
  • Stan is a probabilistic programming language for statistical inference written in C++
  • ArviZ a Python library for exploratory analysis of Bayesian models
  • Bambi is a high-level Bayesian model-building interface based on PyMC

References

[edit ]
  1. ^ "Release 5.26.1". 17 October 2025. Retrieved 20 October 2025.
  2. ^ Abril-Pla O, Andreani V, Carroll C, Dong L, Fonnesbeck CJ, Kochurov M, Kumar R, Lao J, Luhmann CC, Martin OA, Osthege M, Vieira R, Wiecki T, Zinkov R. (2023) PyMC: a modern, and comprehensive probabilistic programming framework in Python. PeerJ Comput. Sci. 9:e1516 doi:10.7717/peerj-cs.1516
  3. ^ Salvatier J, Wiecki TV, Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2:e55 doi:10.7717/peerj-cs.55
  4. ^ Martin, Osvaldo (2024). Bayesian Analysis with Python. Packt Publishing Ltd. ISBN 978-1-80512-716-1 . Retrieved 24 February 2024.
  5. ^ Martin, Osvaldo; Kumar, Ravin; Lao, Junpeng (2021). Bayesian Modeling and Computation in Python. CRC-press. pp. 1–420. ISBN 978-0-367-89436-8 . Retrieved 7 July 2022.
  6. ^ Davidson-Pilon, Cameron (2015年09月30日). Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference. Addison-Wesley Professional. ISBN 978-0-13-390292-1.
  7. ^ "documentation" . Retrieved 2017年09月20日.
  8. ^ "The Algorithms Behind Probabilistic Programming" . Retrieved 2017年03月10日.
  9. ^ "NumFOCUS Announces New Fiscally Sponsored Project: PyMC3". NumFOCUS | Open Code = Better Science. Retrieved 2017年03月10日.
  10. ^ Greiner, J.; Burgess, J. M.; Savchenko, V.; Yu, H.-F. (2016). "On the Fermi-GBM Event 0.4 s after GW150914". The Astrophysical Journal Letters. 827 (2): L38. arXiv:1606.00314 . Bibcode:2016ApJ...827L..38G. doi:10.3847/2041-8205/827/2/L38 . ISSN 2041-8205. S2CID 3529170.
  11. ^ Hilbe, Joseph M.; Souza, Rafael S. de; Ishida, Emille E. O. (2017年04月30日). Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan. Cambridge University Press. ISBN 978-1-108-21074-4.
  12. ^ Brauner, Jan M.; Mindermann, Sören; Sharma, Mrinank; Johnston, David; Salvatier, John; Gavenčiak, Tom; Stephenson, Anna B.; Leech, Gavin; Altman, George; Mikulik, Vladimir; Norman, Alexander John; Monrad, Joshua Teperowski; Besiroglu, Tamay; Ge, Hong; Hartwick, Meghan A.; Teh, Yee Whye; Chindelevitch, Leonid; Gal, Yarin; Kulveit, Jan (2020年12月15日). "Inferring the effectiveness of government interventions against COVID-19". Science. 371 (6531) eabd9338. doi:10.1126/science.abd9338 . PMC 7877495 . PMID 33323424.
  13. ^ Systrom, Kevin; Vladek, Thomas; Krieger, Mike. "Rt.live Github repository". Rt.live. Retrieved 10 January 2021.
  14. ^ Wagner, Stacey D.; Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew (2016年09月28日). "Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy". PLOS Genetics. 12 (9) e1006316. doi:10.1371/journal.pgen.1006316 . ISSN 1553-7404. PMC 5082313 . PMID 27681373.
  15. ^ Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y.; Neutze, Richard; Katona, Gergely (2017年03月01日). "Asymmetry in serial femtosecond crystallography data". Acta Crystallographica Section A. 73 (2): 93–101. Bibcode:2017AcCry..73...93S. doi:10.1107/s2053273316018696. ISSN 2053-2733. PMC 5332129 . PMID 28248658.
  16. ^ Katona, Gergely; Garcia-Bonete, Maria-Jose; Lundholm, Ida (2016年05月01日). "Estimating the difference between structure-factor amplitudes using multivariate Bayesian inference". Acta Crystallographica Section A. 72 (3): 406–411. Bibcode:2016AcCry..72..406K. doi:10.1107/S2053273316003430. ISSN 2053-2733. PMC 4850660 . PMID 27126118.
  17. ^ Garay, Pablo G.; Martin, Osvaldo A.; Scheraga, Harold A.; Vila, Jorge A. (2016年07月21日). "Detection of methylation, acetylation and glycosylation of protein residues by monitoring13C chemical-shift changes: A quantum-chemical study". PeerJ. 4 e2253. doi:10.7717/peerj.2253 . ISSN 2167-8359. PMC 4963218 . PMID 27547559.
  18. ^ Wang, Yan; Huang, Hong; Huang, Lida; Ristic, Branko (2017). "Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: A comparison of likelihood functions and distance measures". Atmospheric Environment. 152: 519–530. Bibcode:2017AtmEn.152..519W. doi:10.1016/j.atmosenv.2017年01月01日4.
  19. ^ MacNeil, M. Aaron; Chong-Seng, Karen M.; Pratchett, Deborah J.; Thompson, Casssandra A.; Messmer, Vanessa; Pratchett, Morgan S. (2017年03月14日). "Age and Growth of An Outbreaking Acanthaster cf. solaris Population within the Great Barrier Reef" (PDF). Diversity. 9 (1): 18. doi:10.3390/d9010018 .
  20. ^ Tünnermann, Jan; Scharlau, Ingrid (2016). "Peripheral Visual Cues: Their Fate in Processing and Effects on Attention and Temporal-Order Perception". Frontiers in Psychology. 7: 1442. doi:10.3389/fpsyg.2016.01442 . ISSN 1664-1078. PMC 5052275 . PMID 27766086.
  21. ^ Graham, Nicholas A. J.; Jennings, Simon; MacNeil, M. Aaron; Mouillot, David; Wilson, Shaun K. (2015). "Predicting climate-driven regime shifts versus rebound potential in coral reefs". Nature. 518 (7537): 94–97. Bibcode:2015Natur.518...94G. doi:10.1038/nature14140. PMID 25607371. S2CID 4453338.
  22. ^ Mascarenhas, Maya N.; Flaxman, Seth R.; Boerma, Ties; Vanderpoel, Sheryl; Stevens, Gretchen A. (2012年12月18日). "National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys". PLOS Medicine. 9 (12) e1001356. doi:10.1371/journal.pmed.1001356 . ISSN 1549-1676. PMC 3525527 . PMID 23271957.
  23. ^ Cavanagh, James F; Wiecki, Thomas V; Cohen, Michael X; Figueroa, Christina M; Samanta, Johan; Sherman, Scott J; Frank, Michael J (2011). "Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold". Nature Neuroscience. 14 (11): 1462–1467. doi:10.1038/nn.2925. PMC 3394226 . PMID 21946325.
  24. ^ Gething, Peter W.; Elyazar, Iqbal R. F.; Moyes, Catherine L.; Smith, David L.; Battle, Katherine E.; Guerra, Carlos A.; Patil, Anand P.; Tatem, Andrew J.; Howes, Rosalind E. (2012年09月06日). "A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010". PLOS Neglected Tropical Diseases. 6 (9) e1814. Bibcode:2012PNTDi...6.1814G. doi:10.1371/journal.pntd.0001814 . ISSN 1935-2735. PMC 3435256 . PMID 22970336.
  25. ^ Pullan, Rachel L.; Smith, Jennifer L.; Jasrasaria, Rashmi; Brooker, Simon J. (2014年01月21日). "Global numbers of infection and disease burden of soil transmitted helminth infections in 2010". Parasites & Vectors. 7: 37. Bibcode:2014PVec....7...37P. doi:10.1186/1756-3305-7-37 . ISSN 1756-3305. PMC 3905661 . PMID 24447578.
  26. ^ Lamblin, Pascal (28 September 2017). "MILA and the future of Theano". theano-users (Mailing list). Retrieved 28 September 2017.
  27. ^ Developers, PyMC (2018年05月17日). "Theano, TensorFlow and the Future of PyMC". PyMC Developers. Retrieved 2019年01月25日.
  28. ^ "The Future of PyMC3, or: Theano is Dead, Long Live Theano". PyMC Developers. 27 October 2020. Retrieved 10 January 2021.
  29. ^ Bradbury, James; Frostig, Roy; Hawkins, Peter; James, Matthew James; Leary, Chris; Maclaurin, Dougal; Necula, George; Paszke, Adam; VanderPlas, Jake; Wanderman-Milne, Skye; Zhang, Qiao. "JAX". GitHub . Retrieved 10 January 2021.
  30. ^ "PyMC Timeline". PyMC Timeline. Retrieved 10 January 2021.
  31. ^ Hoffman, Matthew D.; Gelman, Andrew (April 2014). "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo". Journal of Machine Learning Research . 15: pp. 1593–1623.
  32. ^ Kucukelbir, Alp; Ranganath, Rajesh; Blei, David M. (June 2015). "Automatic Variational Inference in Stan". 1506 (3431). arXiv:1506.03431 . Bibcode:2015arXiv150603431K. {{cite journal}}: Cite journal requires |journal= (help)

Further reading

[edit ]
  • Martin, Osvaldo (2024). Bayesian Analysis with Python: A Practical Guide to Probabilistic Modeling (Third ed.). Packt. ISBN 978-1-80512-716-1.
[edit ]
  • PyMC website
  • PyMC source, a Git repository hosted on GitHub
  • PyTensor is a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays.
Public domain
Open-source
Freeware
Commercial
Cross-platform
Windows only
Excel add-ons

AltStyle によって変換されたページ (->オリジナル) /