Blog

Jan 30, 2017 · post

The Algorithms Behind Probabilistic Programming

We recently introduced our report on probabilistic programming. The accompanying prototype allows you to explore the past and future of the New York residential real estate market.

This post gives a feel for the content in our report by introducing the algorithms and technology that make probabilistic programming possible. We’ll dive even deeper into these algorithms in conversation with the Stan Group Tuesday, February 7 at 1 pm ET/10am PT. Please join us!

Bayesian Inference

Probabilistic programming enables us to construct and fit probabilistic models in code. At its essence, Bayesian inference is a principled way to draw conclusions from incomplete or imperfect data, by interpreting data in light of prior knowledge of probabilities. As pretty much all real-world data is incomplete or imperfect in some way, it’s an important (and old!) idea.

Bayesian inference might be the way to go if you:

  • want to make use of institutional knowledge (suspicions, beliefs, logical certainties) about the quantities you want to measure and predict, rather than learn solely from the data
  • have several different datasets that you want to learn from
  • need to quantify the probability of all possibilities, not just determine which is most likely
  • want to do online learning (i.e., continually update your model as data arrives)
  • want to do active learning (i.e., gather more information until your predictions reach some threshold of confidence)
  • want to use data to decide if a more complicated model is justified
  • need to explain your decisions to customers or regulators
  • want to use a single model to answer several questions
  • have sparse data with a shared or hierarchical structure

Many — perhaps most — analytics and product problems are like this. And the central idea of Bayesian inference is centuries old. Why, then, do relatively few data analysts, data scientists, and machine learning engineers use the approach?

The Algorithmic Building Blocks

The problem is that, until recently, the algorithms that make product and business problems tractable using Bayesian methods have been difficult to implement and computationally expensive to run. Probabilistic programming systems abstract away many of these difficulties by baking inference algorithms in as building blocks of the language. Morever, these algorithms are robust, so don’t require problem-specific hand-tuning.

One powerful example is sampling from an arbitrary probability distribution, which we need to do often (and efficiently!) when doing inference. The brute force approach, rejection sampling, is problematic because acceptance rates are low: as only a tiny fraction of attempts generate successful samples, the algorithms are slow and inefficient. See this post by Jeremey Kun for further details.

Until recently, the main alternative to this naive approach was Markov Chain Monte Carlo sampling (of which Metropolis Hastings and Gibbs sampling are well-known examples). If you used Bayesian inference in the 90s or early 2000s, you may remember BUGS (and WinBUGS) or JAGS, which used these methods. These remain popular teaching tools (see e.g. STATS331 by Brendon Brewer, our favorite elementary introduction to Bayesian data analysis). But MCMC samplers are often too slow for problems with rich structure or internet-scale data.

Bayesian inference research in the last 5-10 years has therefore focused on two new approaches that use clever ideas to make sure the sampler spends more time in regions of high probability, raising efficiency. Those are Hamiltonian Monte Carlo and Variational inference.

Hamiltonian Monte Carlo and the No U-Turn Sampler

Hamiltonian Monte Carlo (HMC) treats the probability distribution as a physical surface. It uses an elegant and computationally efficient idea from 19th-century physics to explore that surface using calculus, as if under the influence of gravity. This method doesn’t work for discrete parameters, but the user doesn’t need to differentiate functions by hand.

To use HMC, you need to tune a sensitive hyperparameter, which makes its application expensive and error-prone. The invention of the No U-Turn Sampler (NUTS), a robust algorithm that tunes this parameter automatically, was crucial for making probabilistic programming useful and practical.

Variational Inference and Automatic Differentation

Variational inference (VI) samples from a distribution by building a simple approximation of the distribution. That approximation is so simple that it can be sampled from directly, entirely circumventing the need for approximate sampling algorithms like MCMC or HMC.

To do this, we start with simple distributions that we understand well (e.g., Gaussians) and perturb them until they match the real distribution from which we want to sample. The bulk of this work is done by stochastic gradient descent (SGD). Given its widespread use in machine learning (e.g., it’s used to train deep neural networks), SGD is well understood and optimized.

Converting a probabilistic model from a sampling approach to VI used to require complex math, making it hard for non-experts. Automatic Differentiation Variational Inference solves this problem by using automatic differentation (having computers take exact derivatives of arbitrary functions) to differentiate functions at the CPU instruction level, allowing a probability distribution to be explored efficiently.

Probabilistic Programming Languages

ADVI and HMC with NUTS are the two fundamental algorithmic innovations that have made probabilistic programming possible. Their inclusion in leading probabilistic programming environments (which can be traced back to these two blog posts from 2010) makes inference a one-liner. The end user doesn’t need to tune parameters or differentiate functions by hand. And because they’re built on Hamiltonian Monte Carlo or variational inference, they’re fast.

But fast and robust algorithms are not all that’s required to make Bayesian inference a practical proposition. Probabilistic programming languages also make life simpler by providing a concise syntax to define generative models using a library of built-in probability distributions. Probabilistic concepts are primitive objects defined in the core language. Specifying the model is therefore a declarative problem for the user, who declares what is known to be true and lets the language figure out how to derive conclusions.

The most popular probabilistic programming tools are Stan and PyMC3. Edward is a newcomer gaining a lot of attention. Stan experts Eric Novik and Daniel Lee will walk us through how Stan works and what problems they’ve used it to solve in our online event February 7.

For more on PyMC3 see our interview with Thomas Wiecki a PyMC3 core developer (and Director of Data Science at Quantopian). We also enjoyed Chris Fonnesbeck’s blog post that accompanied the recent official release of PyMC3.

In the report we go into more detail on the strengths and weaknesses of these two languages, and discuss some of the many other options. Whichever language you use, the claim of probabilistic programming - that it hides the complexity of Bayesian inference - is more true than ever.

Mike

Read more

Newer
Older

Latest posts

Nov 15, 2022 · newsletter
November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
Nov 14, 2022 · post
by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
Oct 20, 2022 · newsletter
October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
Sep 21, 2022 · newsletter
September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
Sep 8, 2022 · post
by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: "Sad Face". February 2022. Right: "Eyyyy". August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
Aug 18, 2022 · newsletter
August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.

Popular posts

Oct 30, 2019 · newsletter
Nov 14, 2018 · post
Apr 10, 2018 · post
Oct 4, 2017 · post
Aug 22, 2016 · whitepaper
Feb 24, 2016 · post

Reports

In-depth guides to specific machine learning capabilities
FF24

Text Style Transfer

The NLP task of text style transfer (TST) aims to automatically control the style attributes of a piece of text while preserving the content, which is an important consideration for making NLP more user-centric. In this report, we explore text style transfer through an applied use case — neutralizing subjectivity bias in free text. Along the way, we describe our sequence-to-sequence modeling approach leveraging HuggingFace Transformers, and present a set of custom, reference-free evaluation metrics for quantifying model performance. Finally, we conclude with a discussion of ethics centered around our prototype: Exploring Intelligent Writing Assistance.
FF22

Inferring Concept Drift Without Labeled Data

Concept drift occurs when the statistical properties of a target domain change overtime causing model performance to degrade. Drift detection is generally achieved by monitoring a performance metric of interest and triggering a retraining pipeline when that metric falls below some designated threshold. However, this approach assumes ample labeled data is available at prediction time - an unrealistic constraint for many production systems. In this report, we explore various approaches for dealing with concept drift when labeled data is not readily accessible.
FF19

Session-based Recommender Systems

Being able to recommend an item of interest to a user (based on their past preferences) is a highly relevant problem in practice. A key trend over the past few years has been session-based recommendation algorithms that provide recommendations solely based on a user’s interactions in an ongoing session, and which do not require the existence of user profiles or their entire historical preferences. This report explores a simple, yet powerful, NLP-based approach (word2vec) to recommend a next item to a user. While NLP-based approaches are generally employed for linguistic tasks, here we exploit them to learn the structure induced by a user’s behavior or an item’s nature.
FF18

Few-Shot Text Classification

Text classification can be used for sentiment analysis, topic assignment, document identification, article recommendation, and more. While dozens of techniques now exist for this fundamental task, many of them require massive amounts of labeled data in order to be useful. Collecting annotations for your use case is typically one of the most costly parts of any machine learning application. In this report, we explore how latent text embeddings can be used with few (or even zero) training examples and provide insights into best practices for implementing this method.

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
Library

NeuralQA

A usable library for question answering on large datasets.
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera Blog Twitter

©2022 Cloudera, Inc. All rights reserved.

AltStyle によって変換されたページ (->オリジナル) /