Proofs related to chi-squared distribution
Find sources: "Proofs related to chi-squared distribution" – news · newspapers · books · scholar · JSTOR (October 2025) (Learn how and when to remove this message)
The following are proofs of several characteristics related to the chi-squared distribution.
Derivations of the pdf
[edit ]Derivation of the pdf for one degree of freedom
[edit ]Let random variable Y be defined as Y = X2 where X has normal distribution with mean 0 and variance 1 (that is X ~ N(0,1)).
Then,
{\displaystyle {\begin{alignedat}{2}{\text{for}}~y<0,&~~F_{Y}(y)=P(Y<y)=0~~{\text{and}}\\{\text{for}}~y\geq 0,&~~F_{Y}(y)=P(Y<y)=P(X^{2}<y)=P(|X|<{\sqrt {y}})=P(-{\sqrt {y}}<X<{\sqrt {y}})\\~~&=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})=F_{X}({\sqrt {y}})-(1-F_{X}({\sqrt {y}}))=2F_{X}({\sqrt {y}})-1\end{alignedat}}}
- {\displaystyle {\begin{aligned}f_{Y}(y)&={\tfrac {d}{dy}}F_{Y}(y)=2{\tfrac {d}{dy}}F_{X}({\sqrt {y}})-0=2{\frac {d}{dy}}\left(\int _{-\infty }^{\sqrt {y}}{\frac {1}{\sqrt {2\pi }}}e^{\frac {-t^{2}}{2}}dt\right)\\&=2{\frac {1}{\sqrt {2\pi }}}e^{-{\frac {y}{2}}}({\sqrt {y}})'_{y}=2{\frac {1}{{\sqrt {2}}{\sqrt {\pi }}}}e^{-{\frac {y}{2}}}\left({\frac {1}{2}}y^{-{\frac {1}{2}}}\right)\\&={\frac {1}{2^{\frac {1}{2}}\Gamma ({\frac {1}{2}})}}y^{-{\frac {1}{2}}}e^{-{\frac {y}{2}}}\end{aligned}}}
Where {\displaystyle F} and {\displaystyle f} are the cdf and pdf of the corresponding random variables.
Then {\displaystyle Y=X^{2}\sim \chi _{1}^{2}.}
Alternative proof directly using the change of variable formula
[edit ]The change of variable formula (implicitly derived above), for a monotonic transformation {\displaystyle y=g(x)}, is:
- {\displaystyle f_{Y}(y)=\sum _{i}f_{X}(g_{i}^{-1}(y))\left|{\frac {dg_{i}^{-1}(y)}{dy}}\right|.}
In this case the change is not monotonic, because every value of {\displaystyle \scriptstyle Y} has two corresponding values of {\displaystyle \scriptstyle X} (one positive and negative). However, because of symmetry, both halves will transform identically, i.e.
- {\displaystyle f_{Y}(y)=2f_{X}(g^{-1}(y))\left|{\frac {dg^{-1}(y)}{dy}}\right|.}
In this case, the transformation is: {\displaystyle x=g^{-1}(y)={\sqrt {y}}}, and its derivative is {\displaystyle {\frac {dg^{-1}(y)}{dy}}={\frac {1}{2{\sqrt {y}}}}.}
So here:
- {\displaystyle f_{Y}(y)=2{\frac {1}{\sqrt {2\pi }}}e^{-y/2}{\frac {1}{2{\sqrt {y}}}}={\frac {1}{\sqrt {2\pi y}}}e^{-y/2}.}
And one gets the chi-squared distribution, noting the property of the gamma function: {\displaystyle \Gamma (1/2)={\sqrt {\pi }}}.
Derivation of the pdf for two degrees of freedom
[edit ]There are several methods to derive chi-squared distribution with 2 degrees of freedom. Here is one based on the distribution with 1 degree of freedom.
Suppose that {\displaystyle X} and {\displaystyle Y} are two independent variables satisfying {\displaystyle X\sim \chi _{1}^{2}} and {\displaystyle Y\sim \chi _{1}^{2}}, so that the probability density functions of {\displaystyle X} and {\displaystyle Y} are respectively:
- {\displaystyle f_{X}(x)={\frac {1}{2^{\frac {1}{2}}\Gamma ({\frac {1}{2}})}}x^{-{\frac {1}{2}}}e^{-{\frac {x}{2}}}}
and of course {\displaystyle f_{Y}(y)=f_{X}(y)}. Then, we can derive the joint distribution of {\displaystyle (X,Y)}:
- {\displaystyle f(x,y)=f_{X}(x),円f_{Y}(y)={\frac {1}{2\pi }}(xy)^{-{\frac {1}{2}}}e^{-{\frac {x+y}{2}}}}
where {\displaystyle \Gamma ({\tfrac {1}{2}})^{2}=\pi }. Further[clarification needed ], let {\displaystyle A=xy} and {\displaystyle B=x+y}, we can get that:
- {\displaystyle x={\frac {B+{\sqrt {B^{2}-4A}}}{2}}}
and
- {\displaystyle y={\frac {B-{\sqrt {B^{2}-4A}}}{2}}}
or, inversely
- {\displaystyle x={\frac {B-{\sqrt {B^{2}-4A}}}{2}}}
and
- {\displaystyle y={\frac {B+{\sqrt {B^{2}-4A}}}{2}}}
Since the two variable change policies are symmetric, we take the upper one and multiply the result by 2. The Jacobian determinant can be calculated as[clarification needed ]:
- {\displaystyle \operatorname {Jacobian} \left({\frac {x,y}{A,B}}\right)={\begin{vmatrix}-(B^{2}-4A)^{-{\frac {1}{2}}}&{\frac {1+B(B^{2}-4A)^{-{\frac {1}{2}}}}{2}}\\(B^{2}-4A)^{-{\frac {1}{2}}}&{\frac {1-B(B^{2}-4A)^{-{\frac {1}{2}}}}{2}}\\\end{vmatrix}}=-(B^{2}-4A)^{-{\frac {1}{2}}}}
Now we can change {\displaystyle f(x,y)} to {\displaystyle f(A,B)}[clarification needed ]:
- {\displaystyle f(A,B)=2\times {\frac {1}{2\pi }}A^{-{\frac {1}{2}}}e^{-{\frac {B}{2}}}(B^{2}-4A)^{-{\frac {1}{2}}}}
where the leading constant 2 is to take both the two variable change policies into account. Finally, we integrate out {\displaystyle A}[clarification needed ] to get the distribution of {\displaystyle B}, i.e. {\displaystyle x+y}:
- {\displaystyle f(B)=2\times {\frac {e^{-{\frac {B}{2}}}}{2\pi }}\int _{0}^{\frac {B^{2}}{4}}A^{-{\frac {1}{2}}}(B^{2}-4A)^{-{\frac {1}{2}}}dA}
Substituting {\displaystyle A={\frac {B^{2}}{4}}\sin ^{2}(t)} gives:
- {\displaystyle f(B)=2\times {\frac {e^{-{\frac {B}{2}}}}{2\pi }}\int _{0}^{\frac {\pi }{2}},円dt}
So, the result is:
- {\displaystyle f(B)={\frac {e^{-{\frac {B}{2}}}}{2}}}
Derivation of the pdf for k degrees of freedom
[edit ]Consider the k samples {\displaystyle x_{i}} to represent a single point in a k-dimensional space. The chi square distribution for k degrees of freedom will then be given by:
- {\displaystyle P(Q),円dQ=\int _{\mathcal {V}}\prod _{i=1}^{k}(N(x_{i}),円dx_{i})=\int _{\mathcal {V}}{\frac {e^{-(x_{1}^{2}+x_{2}^{2}+\cdots +x_{k}^{2})/2}}{(2\pi )^{k/2}}},円dx_{1},円dx_{2}\cdots dx_{k}}
where {\displaystyle N(x)} is the standard normal distribution and {\displaystyle {\mathcal {V}}} is that elemental shell volume at Q(x), which is proportional to the (k − 1)-dimensional surface in k-space for which
- {\displaystyle Q=\sum _{i=1}^{k}x_{i}^{2}}
It can be seen that this surface is the surface of a k-dimensional ball or, alternatively, an n-sphere where n = k - 1 with radius {\displaystyle R={\sqrt {Q}}}, and that the term in the exponent is simply expressed in terms of Q. Since it is a constant, it may be removed from inside the integral.
- {\displaystyle P(Q),円dQ={\frac {e^{-Q/2}}{(2\pi )^{k/2}}}\int _{\mathcal {V}}dx_{1},円dx_{2}\cdots dx_{k}}
The integral is now simply the surface area A of the (k − 1)-sphere times the infinitesimal thickness of the sphere which is
- {\displaystyle dR={\frac {dQ}{2Q^{1/2}}}.}
The area of a (k − 1)-sphere is:
- {\displaystyle A={\frac {2R^{k-1}\pi ^{k/2}}{\Gamma (k/2)}}}
Substituting, realizing that {\displaystyle \Gamma (z+1)=z\Gamma (z)}, and cancelling terms yields:
- {\displaystyle P(Q),円dQ={\frac {e^{-Q/2}}{(2\pi )^{k/2}}}A,円dR={\frac {1}{2^{k/2}\Gamma (k/2)}}Q^{k/2-1}e^{-Q/2},円dQ}