Jump to content
Wikipedia The Free Encyclopedia

Proofs related to chi-squared distribution

From Wikipedia, the free encyclopedia
This article does not cite any sources . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Proofs related to chi-squared distribution" – news · newspapers · books · scholar · JSTOR
(October 2025) (Learn how and when to remove this message)

The following are proofs of several characteristics related to the chi-squared distribution.

Derivations of the pdf

[edit ]

Derivation of the pdf for one degree of freedom

[edit ]

Let random variable Y be defined as Y = X2 where X has normal distribution with mean 0 and variance 1 (that is X ~ N(0,1)).

Then,
for   y < 0 ,     F Y ( y ) = P ( Y < y ) = 0     and for   y 0 ,     F Y ( y ) = P ( Y < y ) = P ( X 2 < y ) = P ( | X | < y ) = P ( y < X < y )     = F X ( y ) F X ( y ) = F X ( y ) ( 1 F X ( y ) ) = 2 F X ( y ) 1 {\displaystyle {\begin{alignedat}{2}{\text{for}}~y<0,&~~F_{Y}(y)=P(Y<y)=0~~{\text{and}}\\{\text{for}}~y\geq 0,&~~F_{Y}(y)=P(Y<y)=P(X^{2}<y)=P(|X|<{\sqrt {y}})=P(-{\sqrt {y}}<X<{\sqrt {y}})\\~~&=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})=F_{X}({\sqrt {y}})-(1-F_{X}({\sqrt {y}}))=2F_{X}({\sqrt {y}})-1\end{alignedat}}} {\displaystyle {\begin{alignedat}{2}{\text{for}}~y<0,&~~F_{Y}(y)=P(Y<y)=0~~{\text{and}}\\{\text{for}}~y\geq 0,&~~F_{Y}(y)=P(Y<y)=P(X^{2}<y)=P(|X|<{\sqrt {y}})=P(-{\sqrt {y}}<X<{\sqrt {y}})\\~~&=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})=F_{X}({\sqrt {y}})-(1-F_{X}({\sqrt {y}}))=2F_{X}({\sqrt {y}})-1\end{alignedat}}}

f Y ( y ) = d d y F Y ( y ) = 2 d d y F X ( y ) 0 = 2 d d y ( y 1 2 π e t 2 2 d t ) = 2 1 2 π e y 2 ( y ) y = 2 1 2 π e y 2 ( 1 2 y 1 2 ) = 1 2 1 2 Γ ( 1 2 ) y 1 2 e y 2 {\displaystyle {\begin{aligned}f_{Y}(y)&={\tfrac {d}{dy}}F_{Y}(y)=2{\tfrac {d}{dy}}F_{X}({\sqrt {y}})-0=2{\frac {d}{dy}}\left(\int _{-\infty }^{\sqrt {y}}{\frac {1}{\sqrt {2\pi }}}e^{\frac {-t^{2}}{2}}dt\right)\\&=2{\frac {1}{\sqrt {2\pi }}}e^{-{\frac {y}{2}}}({\sqrt {y}})'_{y}=2{\frac {1}{{\sqrt {2}}{\sqrt {\pi }}}}e^{-{\frac {y}{2}}}\left({\frac {1}{2}}y^{-{\frac {1}{2}}}\right)\\&={\frac {1}{2^{\frac {1}{2}}\Gamma ({\frac {1}{2}})}}y^{-{\frac {1}{2}}}e^{-{\frac {y}{2}}}\end{aligned}}} {\displaystyle {\begin{aligned}f_{Y}(y)&={\tfrac {d}{dy}}F_{Y}(y)=2{\tfrac {d}{dy}}F_{X}({\sqrt {y}})-0=2{\frac {d}{dy}}\left(\int _{-\infty }^{\sqrt {y}}{\frac {1}{\sqrt {2\pi }}}e^{\frac {-t^{2}}{2}}dt\right)\\&=2{\frac {1}{\sqrt {2\pi }}}e^{-{\frac {y}{2}}}({\sqrt {y}})'_{y}=2{\frac {1}{{\sqrt {2}}{\sqrt {\pi }}}}e^{-{\frac {y}{2}}}\left({\frac {1}{2}}y^{-{\frac {1}{2}}}\right)\\&={\frac {1}{2^{\frac {1}{2}}\Gamma ({\frac {1}{2}})}}y^{-{\frac {1}{2}}}e^{-{\frac {y}{2}}}\end{aligned}}}

Where F {\displaystyle F} {\displaystyle F} and f {\displaystyle f} {\displaystyle f} are the cdf and pdf of the corresponding random variables.

Then Y = X 2 χ 1 2 . {\displaystyle Y=X^{2}\sim \chi _{1}^{2}.} {\displaystyle Y=X^{2}\sim \chi _{1}^{2}.}

Alternative proof directly using the change of variable formula

[edit ]

The change of variable formula (implicitly derived above), for a monotonic transformation y = g ( x ) {\displaystyle y=g(x)} {\displaystyle y=g(x)}, is:

f Y ( y ) = i f X ( g i 1 ( y ) ) | d g i 1 ( y ) d y | . {\displaystyle f_{Y}(y)=\sum _{i}f_{X}(g_{i}^{-1}(y))\left|{\frac {dg_{i}^{-1}(y)}{dy}}\right|.} {\displaystyle f_{Y}(y)=\sum _{i}f_{X}(g_{i}^{-1}(y))\left|{\frac {dg_{i}^{-1}(y)}{dy}}\right|.}

In this case the change is not monotonic, because every value of Y {\displaystyle \scriptstyle Y} {\displaystyle \scriptstyle Y} has two corresponding values of X {\displaystyle \scriptstyle X} {\displaystyle \scriptstyle X} (one positive and negative). However, because of symmetry, both halves will transform identically, i.e.

f Y ( y ) = 2 f X ( g 1 ( y ) ) | d g 1 ( y ) d y | . {\displaystyle f_{Y}(y)=2f_{X}(g^{-1}(y))\left|{\frac {dg^{-1}(y)}{dy}}\right|.} {\displaystyle f_{Y}(y)=2f_{X}(g^{-1}(y))\left|{\frac {dg^{-1}(y)}{dy}}\right|.}

In this case, the transformation is: x = g 1 ( y ) = y {\displaystyle x=g^{-1}(y)={\sqrt {y}}} {\displaystyle x=g^{-1}(y)={\sqrt {y}}}, and its derivative is d g 1 ( y ) d y = 1 2 y . {\displaystyle {\frac {dg^{-1}(y)}{dy}}={\frac {1}{2{\sqrt {y}}}}.} {\displaystyle {\frac {dg^{-1}(y)}{dy}}={\frac {1}{2{\sqrt {y}}}}.}

So here:

f Y ( y ) = 2 1 2 π e y / 2 1 2 y = 1 2 π y e y / 2 . {\displaystyle f_{Y}(y)=2{\frac {1}{\sqrt {2\pi }}}e^{-y/2}{\frac {1}{2{\sqrt {y}}}}={\frac {1}{\sqrt {2\pi y}}}e^{-y/2}.} {\displaystyle f_{Y}(y)=2{\frac {1}{\sqrt {2\pi }}}e^{-y/2}{\frac {1}{2{\sqrt {y}}}}={\frac {1}{\sqrt {2\pi y}}}e^{-y/2}.}

And one gets the chi-squared distribution, noting the property of the gamma function: Γ ( 1 / 2 ) = π {\displaystyle \Gamma (1/2)={\sqrt {\pi }}} {\displaystyle \Gamma (1/2)={\sqrt {\pi }}}.

Derivation of the pdf for two degrees of freedom

[edit ]

There are several methods to derive chi-squared distribution with 2 degrees of freedom. Here is one based on the distribution with 1 degree of freedom.

Suppose that X {\displaystyle X} {\displaystyle X} and Y {\displaystyle Y} {\displaystyle Y} are two independent variables satisfying X χ 1 2 {\displaystyle X\sim \chi _{1}^{2}} {\displaystyle X\sim \chi _{1}^{2}} and Y χ 1 2 {\displaystyle Y\sim \chi _{1}^{2}} {\displaystyle Y\sim \chi _{1}^{2}}, so that the probability density functions of X {\displaystyle X} {\displaystyle X} and Y {\displaystyle Y} {\displaystyle Y} are respectively:

f X ( x ) = 1 2 1 2 Γ ( 1 2 ) x 1 2 e x 2 {\displaystyle f_{X}(x)={\frac {1}{2^{\frac {1}{2}}\Gamma ({\frac {1}{2}})}}x^{-{\frac {1}{2}}}e^{-{\frac {x}{2}}}} {\displaystyle f_{X}(x)={\frac {1}{2^{\frac {1}{2}}\Gamma ({\frac {1}{2}})}}x^{-{\frac {1}{2}}}e^{-{\frac {x}{2}}}}

and of course f Y ( y ) = f X ( y ) {\displaystyle f_{Y}(y)=f_{X}(y)} {\displaystyle f_{Y}(y)=f_{X}(y)}. Then, we can derive the joint distribution of ( X , Y ) {\displaystyle (X,Y)} {\displaystyle (X,Y)}:

f ( x , y ) = f X ( x ) f Y ( y ) = 1 2 π ( x y ) 1 2 e x + y 2 {\displaystyle f(x,y)=f_{X}(x),円f_{Y}(y)={\frac {1}{2\pi }}(xy)^{-{\frac {1}{2}}}e^{-{\frac {x+y}{2}}}} {\displaystyle f(x,y)=f_{X}(x),円f_{Y}(y)={\frac {1}{2\pi }}(xy)^{-{\frac {1}{2}}}e^{-{\frac {x+y}{2}}}}

where Γ ( 1 2 ) 2 = π {\displaystyle \Gamma ({\tfrac {1}{2}})^{2}=\pi } {\displaystyle \Gamma ({\tfrac {1}{2}})^{2}=\pi }. Further[clarification needed ], let A = x y {\displaystyle A=xy} {\displaystyle A=xy} and B = x + y {\displaystyle B=x+y} {\displaystyle B=x+y}, we can get that:

x = B + B 2 4 A 2 {\displaystyle x={\frac {B+{\sqrt {B^{2}-4A}}}{2}}} {\displaystyle x={\frac {B+{\sqrt {B^{2}-4A}}}{2}}}

and

y = B B 2 4 A 2 {\displaystyle y={\frac {B-{\sqrt {B^{2}-4A}}}{2}}} {\displaystyle y={\frac {B-{\sqrt {B^{2}-4A}}}{2}}}

or, inversely

x = B B 2 4 A 2 {\displaystyle x={\frac {B-{\sqrt {B^{2}-4A}}}{2}}} {\displaystyle x={\frac {B-{\sqrt {B^{2}-4A}}}{2}}}

and

y = B + B 2 4 A 2 {\displaystyle y={\frac {B+{\sqrt {B^{2}-4A}}}{2}}} {\displaystyle y={\frac {B+{\sqrt {B^{2}-4A}}}{2}}}

Since the two variable change policies are symmetric, we take the upper one and multiply the result by 2. The Jacobian determinant can be calculated as[clarification needed ]:

Jacobian ( x , y A , B ) = | ( B 2 4 A ) 1 2 1 + B ( B 2 4 A ) 1 2 2 ( B 2 4 A ) 1 2 1 B ( B 2 4 A ) 1 2 2 | = ( B 2 4 A ) 1 2 {\displaystyle \operatorname {Jacobian} \left({\frac {x,y}{A,B}}\right)={\begin{vmatrix}-(B^{2}-4A)^{-{\frac {1}{2}}}&{\frac {1+B(B^{2}-4A)^{-{\frac {1}{2}}}}{2}}\\(B^{2}-4A)^{-{\frac {1}{2}}}&{\frac {1-B(B^{2}-4A)^{-{\frac {1}{2}}}}{2}}\\\end{vmatrix}}=-(B^{2}-4A)^{-{\frac {1}{2}}}} {\displaystyle \operatorname {Jacobian} \left({\frac {x,y}{A,B}}\right)={\begin{vmatrix}-(B^{2}-4A)^{-{\frac {1}{2}}}&{\frac {1+B(B^{2}-4A)^{-{\frac {1}{2}}}}{2}}\\(B^{2}-4A)^{-{\frac {1}{2}}}&{\frac {1-B(B^{2}-4A)^{-{\frac {1}{2}}}}{2}}\\\end{vmatrix}}=-(B^{2}-4A)^{-{\frac {1}{2}}}}


Now we can change f ( x , y ) {\displaystyle f(x,y)} {\displaystyle f(x,y)} to f ( A , B ) {\displaystyle f(A,B)} {\displaystyle f(A,B)}[clarification needed ]:

f ( A , B ) = 2 × 1 2 π A 1 2 e B 2 ( B 2 4 A ) 1 2 {\displaystyle f(A,B)=2\times {\frac {1}{2\pi }}A^{-{\frac {1}{2}}}e^{-{\frac {B}{2}}}(B^{2}-4A)^{-{\frac {1}{2}}}} {\displaystyle f(A,B)=2\times {\frac {1}{2\pi }}A^{-{\frac {1}{2}}}e^{-{\frac {B}{2}}}(B^{2}-4A)^{-{\frac {1}{2}}}}

where the leading constant 2 is to take both the two variable change policies into account. Finally, we integrate out A {\displaystyle A} {\displaystyle A}[clarification needed ] to get the distribution of B {\displaystyle B} {\displaystyle B}, i.e. x + y {\displaystyle x+y} {\displaystyle x+y}:

f ( B ) = 2 × e B 2 2 π 0 B 2 4 A 1 2 ( B 2 4 A ) 1 2 d A {\displaystyle f(B)=2\times {\frac {e^{-{\frac {B}{2}}}}{2\pi }}\int _{0}^{\frac {B^{2}}{4}}A^{-{\frac {1}{2}}}(B^{2}-4A)^{-{\frac {1}{2}}}dA} {\displaystyle f(B)=2\times {\frac {e^{-{\frac {B}{2}}}}{2\pi }}\int _{0}^{\frac {B^{2}}{4}}A^{-{\frac {1}{2}}}(B^{2}-4A)^{-{\frac {1}{2}}}dA}

Substituting A = B 2 4 sin 2 ( t ) {\displaystyle A={\frac {B^{2}}{4}}\sin ^{2}(t)} {\displaystyle A={\frac {B^{2}}{4}}\sin ^{2}(t)} gives:

f ( B ) = 2 × e B 2 2 π 0 π 2 d t {\displaystyle f(B)=2\times {\frac {e^{-{\frac {B}{2}}}}{2\pi }}\int _{0}^{\frac {\pi }{2}},円dt} {\displaystyle f(B)=2\times {\frac {e^{-{\frac {B}{2}}}}{2\pi }}\int _{0}^{\frac {\pi }{2}},円dt}

So, the result is:

f ( B ) = e B 2 2 {\displaystyle f(B)={\frac {e^{-{\frac {B}{2}}}}{2}}} {\displaystyle f(B)={\frac {e^{-{\frac {B}{2}}}}{2}}}

Derivation of the pdf for k degrees of freedom

[edit ]

Consider the k samples x i {\displaystyle x_{i}} {\displaystyle x_{i}} to represent a single point in a k-dimensional space. The chi square distribution for k degrees of freedom will then be given by:

P ( Q ) d Q = V i = 1 k ( N ( x i ) d x i ) = V e ( x 1 2 + x 2 2 + + x k 2 ) / 2 ( 2 π ) k / 2 d x 1 d x 2 d x k {\displaystyle P(Q),円dQ=\int _{\mathcal {V}}\prod _{i=1}^{k}(N(x_{i}),円dx_{i})=\int _{\mathcal {V}}{\frac {e^{-(x_{1}^{2}+x_{2}^{2}+\cdots +x_{k}^{2})/2}}{(2\pi )^{k/2}}},円dx_{1},円dx_{2}\cdots dx_{k}} {\displaystyle P(Q),円dQ=\int _{\mathcal {V}}\prod _{i=1}^{k}(N(x_{i}),円dx_{i})=\int _{\mathcal {V}}{\frac {e^{-(x_{1}^{2}+x_{2}^{2}+\cdots +x_{k}^{2})/2}}{(2\pi )^{k/2}}},円dx_{1},円dx_{2}\cdots dx_{k}}

where N ( x ) {\displaystyle N(x)} {\displaystyle N(x)} is the standard normal distribution and V {\displaystyle {\mathcal {V}}} {\displaystyle {\mathcal {V}}} is that elemental shell volume at Q(x), which is proportional to the (k − 1)-dimensional surface in k-space for which

Q = i = 1 k x i 2 {\displaystyle Q=\sum _{i=1}^{k}x_{i}^{2}} {\displaystyle Q=\sum _{i=1}^{k}x_{i}^{2}}

It can be seen that this surface is the surface of a k-dimensional ball or, alternatively, an n-sphere where n = k - 1 with radius R = Q {\displaystyle R={\sqrt {Q}}} {\displaystyle R={\sqrt {Q}}}, and that the term in the exponent is simply expressed in terms of Q. Since it is a constant, it may be removed from inside the integral.

P ( Q ) d Q = e Q / 2 ( 2 π ) k / 2 V d x 1 d x 2 d x k {\displaystyle P(Q),円dQ={\frac {e^{-Q/2}}{(2\pi )^{k/2}}}\int _{\mathcal {V}}dx_{1},円dx_{2}\cdots dx_{k}} {\displaystyle P(Q),円dQ={\frac {e^{-Q/2}}{(2\pi )^{k/2}}}\int _{\mathcal {V}}dx_{1},円dx_{2}\cdots dx_{k}}

The integral is now simply the surface area A of the (k − 1)-sphere times the infinitesimal thickness of the sphere which is

d R = d Q 2 Q 1 / 2 . {\displaystyle dR={\frac {dQ}{2Q^{1/2}}}.} {\displaystyle dR={\frac {dQ}{2Q^{1/2}}}.}

The area of a (k − 1)-sphere is:

A = 2 R k 1 π k / 2 Γ ( k / 2 ) {\displaystyle A={\frac {2R^{k-1}\pi ^{k/2}}{\Gamma (k/2)}}} {\displaystyle A={\frac {2R^{k-1}\pi ^{k/2}}{\Gamma (k/2)}}}

Substituting, realizing that Γ ( z + 1 ) = z Γ ( z ) {\displaystyle \Gamma (z+1)=z\Gamma (z)} {\displaystyle \Gamma (z+1)=z\Gamma (z)}, and cancelling terms yields:

P ( Q ) d Q = e Q / 2 ( 2 π ) k / 2 A d R = 1 2 k / 2 Γ ( k / 2 ) Q k / 2 1 e Q / 2 d Q {\displaystyle P(Q),円dQ={\frac {e^{-Q/2}}{(2\pi )^{k/2}}}A,円dR={\frac {1}{2^{k/2}\Gamma (k/2)}}Q^{k/2-1}e^{-Q/2},円dQ} {\displaystyle P(Q),円dQ={\frac {e^{-Q/2}}{(2\pi )^{k/2}}}A,円dR={\frac {1}{2^{k/2}\Gamma (k/2)}}Q^{k/2-1}e^{-Q/2},円dQ}

AltStyle によって変換されたページ (->オリジナル) /