Jump to content
Wikipedia The Free Encyclopedia

Polyconvex function

From Wikipedia, the free encyclopedia

In the calculus of variations, the notion of polyconvexity is a generalization of the notion of convexity for functions defined on spaces of matrices. The notion of polyconvexity was introduced by John M. Ball as a sufficient conditions for proving the existence of energy minimizers in nonlinear elasticity theory.[1] It is satisfied by a large class of hyperelastic stored energy densities, such as Mooney-Rivlin and Ogden materials. The notion of polyconvexity is related to the notions of convexity, quasiconvexity and rank-one convexity through the following diagram:[2]

f  convex f  polyconvex f  quasiconvex f  rank-one convex {\displaystyle f{\text{ convex}}\implies f{\text{ polyconvex}}\implies f{\text{ quasiconvex}}\implies f{\text{ rank-one convex}}} {\displaystyle f{\text{ convex}}\implies f{\text{ polyconvex}}\implies f{\text{ quasiconvex}}\implies f{\text{ rank-one convex}}}

Motivation

[edit ]

Let Ω R n {\displaystyle \Omega \subset \mathbb {R} ^{n}} {\displaystyle \Omega \subset \mathbb {R} ^{n}} be an open bounded domain, u : Ω R m {\displaystyle u:\Omega \rightarrow \mathbb {R} ^{m}} {\displaystyle u:\Omega \rightarrow \mathbb {R} ^{m}} and W 1 , p ( Ω , R m ) {\displaystyle W^{1,p}(\Omega ,\mathbb {R} ^{m})} {\displaystyle W^{1,p}(\Omega ,\mathbb {R} ^{m})} denote the Sobolev space of mappings from Ω {\displaystyle \Omega } {\displaystyle \Omega } to R m {\displaystyle \mathbb {R} ^{m}} {\displaystyle \mathbb {R} ^{m}}. A typical problem in the calculus of variations is to minimize a functional, E : W 1 , p ( Ω , R m ) R {\displaystyle E:W^{1,p}(\Omega ,\mathbb {R} ^{m})\rightarrow \mathbb {R} } {\displaystyle E:W^{1,p}(\Omega ,\mathbb {R} ^{m})\rightarrow \mathbb {R} } of the form

E [ u ] = Ω f ( x , u ( x ) ) d x {\displaystyle E[u]=\int _{\Omega }f(x,\nabla u(x))dx} {\displaystyle E[u]=\int _{\Omega }f(x,\nabla u(x))dx},

where the energy density function, f : Ω × R m × n [ 0 , ) {\displaystyle f:\Omega \times \mathbb {R} ^{m\times n}\rightarrow [0,\infty )} {\displaystyle f:\Omega \times \mathbb {R} ^{m\times n}\rightarrow [0,\infty )} satisfies p {\displaystyle p} {\displaystyle p}-growth, i.e., | f ( x , A ) | M ( 1 + | A | p ) {\displaystyle |f(x,A)|\leq M(1+|A|^{p})} {\displaystyle |f(x,A)|\leq M(1+|A|^{p})} for some M > 0 {\displaystyle M>0} {\displaystyle M>0} and p ( 1 , ) {\displaystyle p\in (1,\infty )} {\displaystyle p\in (1,\infty )}. It is well-known from a theorem of Morrey and Acerbi-Fusco that a necessary and sufficient condition for E {\displaystyle E} {\displaystyle E} to weakly lower-semicontinuous on W 1 , p ( Ω , R m ) {\displaystyle W^{1,p}(\Omega ,\mathbb {R} ^{m})} {\displaystyle W^{1,p}(\Omega ,\mathbb {R} ^{m})} is that f ( x , ) {\displaystyle f(x,\cdot )} {\displaystyle f(x,\cdot )} is quasiconvex for almost every x Ω {\displaystyle x\in \Omega } {\displaystyle x\in \Omega }. With coercivity assumptions on f {\displaystyle f} {\displaystyle f} and boundary conditions on u {\displaystyle u} {\displaystyle u}, this leads to the existence of minimizers for E {\displaystyle E} {\displaystyle E} on W 1 , p ( Ω , R m ) {\displaystyle W^{1,p}(\Omega ,\mathbb {R} ^{m})} {\displaystyle W^{1,p}(\Omega ,\mathbb {R} ^{m})}.[3] However, in many applications, the assumption of p {\displaystyle p} {\displaystyle p}-growth on the energy density is often too restrictive. In the context of elasticity, this is because the energy is required to grow unboundedly to + {\displaystyle +\infty } {\displaystyle +\infty } as local measures of volume approach zero. This led Ball to define the more restrictive notion of polyconvexity to prove the existence of energy minimizers in nonlinear elasticity.

Definition

[edit ]

A function f : R m × n R {\displaystyle f:\mathbb {R} ^{m\times n}\rightarrow \mathbb {R} } {\displaystyle f:\mathbb {R} ^{m\times n}\rightarrow \mathbb {R} } is said to be polyconvex[4] if there exists a convex function Φ : R τ ( m , n ) R {\displaystyle \Phi :\mathbb {R} ^{\tau (m,n)}\rightarrow \mathbb {R} } {\displaystyle \Phi :\mathbb {R} ^{\tau (m,n)}\rightarrow \mathbb {R} } such that

f ( F ) = Φ ( T ( F ) ) {\displaystyle f(F)=\Phi (T(F))} {\displaystyle f(F)=\Phi (T(F))}

where T : R m × n R τ ( m , n ) {\displaystyle T:\mathbb {R} ^{m\times n}\rightarrow \mathbb {R} ^{\tau (m,n)}} {\displaystyle T:\mathbb {R} ^{m\times n}\rightarrow \mathbb {R} ^{\tau (m,n)}} is such that

T ( F ) := ( F , adj 2 ( F ) , . . . , adj m n ( F ) ) . {\displaystyle T(F):=(F,{\text{adj}}_{2}(F),...,{\text{adj}}_{m\wedge n}(F)).} {\displaystyle T(F):=(F,{\text{adj}}_{2}(F),...,{\text{adj}}_{m\wedge n}(F)).}

Here, adj s {\displaystyle {\text{adj}}_{s}} {\displaystyle {\text{adj}}_{s}} stands for the matrix of all s × s {\displaystyle s\times s} {\displaystyle s\times s} minors of the matrix F R m × n {\displaystyle F\in \mathbb {R} ^{m\times n}} {\displaystyle F\in \mathbb {R} ^{m\times n}}, 2 s m n := min ( m , n ) {\displaystyle 2\leq s\leq m\wedge n:=\min(m,n)} {\displaystyle 2\leq s\leq m\wedge n:=\min(m,n)} and

τ ( m , n ) := s = 1 m n σ ( s ) , {\displaystyle \tau (m,n):=\sum _{s=1}^{m\wedge n}\sigma (s),} {\displaystyle \tau (m,n):=\sum _{s=1}^{m\wedge n}\sigma (s),}

where σ ( s ) := ( m s ) ( n s ) {\displaystyle \sigma (s):={\binom {m}{s}}{\binom {n}{s}}} {\displaystyle \sigma (s):={\binom {m}{s}}{\binom {n}{s}}}.

When m = n = 2 {\displaystyle m=n=2} {\displaystyle m=n=2}, T ( F ) = ( F , det F ) {\displaystyle T(F)=(F,\det F)} {\displaystyle T(F)=(F,\det F)} and when m = n = 3 {\displaystyle m=n=3} {\displaystyle m=n=3}, T ( F ) = ( F , cof F , det F ) {\displaystyle T(F)=(F,{\text{cof}},円F,\det F)} {\displaystyle T(F)=(F,{\text{cof}},円F,\det F)}, where cof F {\displaystyle {\text{cof}},円F} {\displaystyle {\text{cof}},円F} denotes the cofactor matrix of F {\displaystyle F} {\displaystyle F}.

In the above definitions, the range of f {\displaystyle f} {\displaystyle f} can also be extended to R { + } {\displaystyle \mathbb {R} \cup \{+\infty \}} {\displaystyle \mathbb {R} \cup \{+\infty \}}.

Properties

[edit ]
  • If f {\displaystyle f} {\displaystyle f} takes only finite values, then polyconvexity implies quasiconvexity and thus leads to the weak lower semicontinuity of the corresponding integral functional on a Sobolev space.
  • If m = 1 {\displaystyle m=1} {\displaystyle m=1} or n = 1 {\displaystyle n=1} {\displaystyle n=1}, then polyconvexity reduces to convexity.
  • If f {\displaystyle f} {\displaystyle f} is polyconvex, then it is locally Lipschitz.
  • Polyconvex functions with subquadratic growth must be convex, i.e., if there exists α 0 {\displaystyle \alpha \geq 0} {\displaystyle \alpha \geq 0} and 0 p < 2 {\displaystyle 0\leq p<2} {\displaystyle 0\leq p<2} such that
f ( F ) α ( 1 + | F | p ) {\displaystyle f(F)\leq \alpha (1+|F|^{p})} {\displaystyle f(F)\leq \alpha (1+|F|^{p})} for every F R m × n {\displaystyle F\in \mathbb {R} ^{m\times n}} {\displaystyle F\in \mathbb {R} ^{m\times n}}, then f {\displaystyle f} {\displaystyle f} is convex.

Examples

[edit ]
  • Every convex function is polyconvex.
  • For the case m = n {\displaystyle m=n} {\displaystyle m=n}, the determinant function is polyconvex, but not convex. In particular, the following type of function that commonly appears in nonlinear elasticity is polyconvex but not convex:
f ( A ) = { 1 det ( A ) , det ( A ) > 0 ; + , det ( A ) 0 ; {\displaystyle f(A)={\begin{cases}{\frac {1}{\det(A)}},&\det(A)>0;\\+\infty ,&\det(A)\leq 0;\end{cases}}} {\displaystyle f(A)={\begin{cases}{\frac {1}{\det(A)}},&\det(A)>0;\\+\infty ,&\det(A)\leq 0;\end{cases}}}

References

[edit ]
  1. ^ Ball, John M. (1976). "Convexity conditions and existence theorems in nonlinear elasticity" (PDF). Archive for Rational Mechanics and Analysis. 63 (4). Springer: 337–403. Bibcode:1976ArRMA..63..337B. doi:10.1007/BF00279992.
  2. ^ Dacorogna, Bernard (2008). Direct Methods in the Calculus of Variations. Applied mathematical sciences. Vol. 78 (2nd ed.). Springer Science+Business Media, LLC. p. 156. doi:10.1007/978-0-387-55249-1. ISBN 978-0-387-35779-9.
  3. ^ Rindler, Filip (2018). Calculus of Variations. Universitext. Springer International Publishing AG. p. 124-125. doi:10.1007/978-3-319-77637-8. ISBN 978-3-319-77636-1.
  4. ^ Dacorogna, Bernard (2008). Direct Methods in the Calculus of Variations. Applied mathematical sciences. Vol. 78 (2nd ed.). Springer Science+Business Media, LLC. p. 157. doi:10.1007/978-0-387-55249-1. ISBN 978-0-387-35779-9.

AltStyle によって変換されたページ (->オリジナル) /