Jump to content
Wikipedia The Free Encyclopedia

Poisson random measure

From Wikipedia, the free encyclopedia

Let ( E , A , μ ) {\displaystyle (E,{\mathcal {A}},\mu )} {\displaystyle (E,{\mathcal {A}},\mu )} be some measure space with σ {\displaystyle \sigma } {\displaystyle \sigma }-finite measure μ {\displaystyle \mu } {\displaystyle \mu }. The Poisson random measure with intensity measure μ {\displaystyle \mu } {\displaystyle \mu } is a family of random variables { N A } A A {\displaystyle \{N_{A}\}_{A\in {\mathcal {A}}}} {\displaystyle \{N_{A}\}_{A\in {\mathcal {A}}}} defined on some probability space ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},\mathrm {P} )} {\displaystyle (\Omega ,{\mathcal {F}},\mathrm {P} )} such that

i) A A , N A {\displaystyle \forall A\in {\mathcal {A}},\quad N_{A}} {\displaystyle \forall A\in {\mathcal {A}},\quad N_{A}} is a Poisson random variable with rate μ ( A ) {\displaystyle \mu (A)} {\displaystyle \mu (A)}.

ii) If sets A 1 , A 2 , , A n A {\displaystyle A_{1},A_{2},\ldots ,A_{n}\in {\mathcal {A}}} {\displaystyle A_{1},A_{2},\ldots ,A_{n}\in {\mathcal {A}}} don't intersect then the corresponding random variables from i) are mutually independent.

iii) ω Ω N ( ω ) {\displaystyle \forall \omega \in \Omega \;N_{\bullet }(\omega )} {\displaystyle \forall \omega \in \Omega \;N_{\bullet }(\omega )} is a measure on ( E , A ) {\displaystyle (E,{\mathcal {A}})} {\displaystyle (E,{\mathcal {A}})}

Existence

[edit ]

If μ 0 {\displaystyle \mu \equiv 0} {\displaystyle \mu \equiv 0} then N 0 {\displaystyle N\equiv 0} {\displaystyle N\equiv 0} satisfies the conditions i)–iii). Otherwise, in the case of finite measure μ {\displaystyle \mu } {\displaystyle \mu }, given Z {\displaystyle Z} {\displaystyle Z}, a Poisson random variable with rate μ ( E ) {\displaystyle \mu (E)} {\displaystyle \mu (E)}, and X 1 , X 2 , {\displaystyle X_{1},X_{2},\ldots } {\displaystyle X_{1},X_{2},\ldots }, mutually independent random variables with distribution μ μ ( E ) {\displaystyle {\frac {\mu }{\mu (E)}}} {\displaystyle {\frac {\mu }{\mu (E)}}}, define N ( ω ) = i = 1 Z ( ω ) δ X i ( ω ) ( ) {\displaystyle N_{\cdot }(\omega )=\sum \limits _{i=1}^{Z(\omega )}\delta _{X_{i}(\omega )}(\cdot )} {\displaystyle N_{\cdot }(\omega )=\sum \limits _{i=1}^{Z(\omega )}\delta _{X_{i}(\omega )}(\cdot )} where δ c ( A ) {\displaystyle \delta _{c}(A)} {\displaystyle \delta _{c}(A)} is a degenerate measure located in c {\displaystyle c} {\displaystyle c}. Then N {\displaystyle N} {\displaystyle N} will be a Poisson random measure. In the case μ {\displaystyle \mu } {\displaystyle \mu } is not finite the measure N {\displaystyle N} {\displaystyle N} can be obtained from the measures constructed above on parts of E {\displaystyle E} {\displaystyle E} where μ {\displaystyle \mu } {\displaystyle \mu } is finite.

Applications

[edit ]

This kind of random measure is often used when describing jumps of stochastic processes, in particular in Lévy–Itō decomposition of the Lévy processes.

Generalizations

[edit ]

The Poisson random measure generalizes to the Poisson-type random measures, where members of the PT family are invariant under restriction to a subspace.

References

[edit ]
  • Sato, K. (2010). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press. ISBN 978-0-521-55302-5.

AltStyle によって変換されたページ (->オリジナル) /