Jump to content
Wikipedia The Free Encyclopedia

Persymmetric matrix

From Wikipedia, the free encyclopedia
(Redirected from Persymmetric)
Square matrix symmetric about its anti-diagonal

In mathematics, persymmetric matrix may refer to:

  1. a square matrix which is symmetric with respect to the northeast-to-southwest diagonal (anti-diagonal); or
  2. a square matrix such that the values on each line perpendicular to the main diagonal are the same for a given line.

The first definition is the most common in the recent literature. The designation "Hankel matrix" is often used for matrices satisfying the property in the second definition.

Definition 1

[edit ]
Symmetry pattern of a persymmetric ×ばつ 5 matrix

Let A = (aij) be an n×ばつn matrix. The first definition of persymmetric requires that a i j = a n j + 1 , n i + 1 {\displaystyle a_{ij}=a_{n-j+1,,円n-i+1}} {\displaystyle a_{ij}=a_{n-j+1,,円n-i+1}} for all i, j.[1] For example, ×ばつ 5 persymmetric matrices are of the form A = [ a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 14 a 31 a 32 a 33 a 23 a 13 a 41 a 42 a 32 a 22 a 12 a 51 a 41 a 31 a 21 a 11 ] . {\displaystyle A={\begin{bmatrix}a_{11}&a_{12}&a_{13}&a_{14}&a_{15}\\a_{21}&a_{22}&a_{23}&a_{24}&a_{14}\\a_{31}&a_{32}&a_{33}&a_{23}&a_{13}\\a_{41}&a_{42}&a_{32}&a_{22}&a_{12}\\a_{51}&a_{41}&a_{31}&a_{21}&a_{11}\end{bmatrix}}.} {\displaystyle A={\begin{bmatrix}a_{11}&a_{12}&a_{13}&a_{14}&a_{15}\\a_{21}&a_{22}&a_{23}&a_{24}&a_{14}\\a_{31}&a_{32}&a_{33}&a_{23}&a_{13}\\a_{41}&a_{42}&a_{32}&a_{22}&a_{12}\\a_{51}&a_{41}&a_{31}&a_{21}&a_{11}\end{bmatrix}}.}

This can be equivalently expressed as AJ = JAT where J is the exchange matrix.

A third way to express this is seen by post-multiplying AJ = JAT with J on both sides, showing that AT rotated 180 degrees is identical to A: A = J A T J . {\displaystyle A=JA^{\mathsf {T}}J.} {\displaystyle A=JA^{\mathsf {T}}J.}

A symmetric matrix is a matrix whose values are symmetric in the northwest-to-southeast diagonal. If a symmetric matrix is rotated by 90°, it becomes a persymmetric matrix. Symmetric persymmetric matrices are sometimes called bisymmetric matrices.

Definition 2

[edit ]
Further information: Hankel matrix

The second definition is due to Thomas Muir.[2] It says that the square matrix A = (aij) is persymmetric if aij depends only on i + j. Persymmetric matrices in this sense, or Hankel matrices as they are often called, are of the form A = [ r 1 r 2 r 3 r n r 2 r 3 r 4 r n + 1 r 3 r 4 r 5 r n + 2 r n r n + 1 r n + 2 r 2 n 1 ] . {\displaystyle A={\begin{bmatrix}r_{1}&r_{2}&r_{3}&\cdots &r_{n}\\r_{2}&r_{3}&r_{4}&\cdots &r_{n+1}\\r_{3}&r_{4}&r_{5}&\cdots &r_{n+2}\\\vdots &\vdots &\vdots &\ddots &\vdots \\r_{n}&r_{n+1}&r_{n+2}&\cdots &r_{2n-1}\end{bmatrix}}.} {\displaystyle A={\begin{bmatrix}r_{1}&r_{2}&r_{3}&\cdots &r_{n}\\r_{2}&r_{3}&r_{4}&\cdots &r_{n+1}\\r_{3}&r_{4}&r_{5}&\cdots &r_{n+2}\\\vdots &\vdots &\vdots &\ddots &\vdots \\r_{n}&r_{n+1}&r_{n+2}&\cdots &r_{2n-1}\end{bmatrix}}.} A persymmetric determinant is the determinant of a persymmetric matrix.[2]

A matrix for which the values on each line parallel to the main diagonal are constant is called a Toeplitz matrix.

See also

[edit ]

References

[edit ]
  1. ^ Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins, ISBN 978-0-8018-5414-9 . See page 193.
  2. ^ a b Muir, Thomas; Metzler, William H. (2003) [1933], Treatise on the Theory of Determinants, Dover Press, p. 419, ISBN 978-0-486-49553-8, OCLC 52203124
Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms


Stub icon

This article about matrices is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /