Out-of-time-ordered correlator
In quantum physics, the out-of-time-ordered correlator (OTOC)[1] serves as a powerful diagnostic tool for characterizing quantum chaos, information scrambling, and other aspects of many-body dynamics. In addition, it provides a quantum mechanical analog to the Lyapunov exponent, often used to characterize the sensitivity of variables to initial conditions in classical chaos. The OTOC thus provides a natural extension of classical chaos theory to the quantum realm, and can be calculated both numerically and experimentally [2] .
Definition
[edit ]For two observable {\displaystyle V} and {\displaystyle W} in Heisenberg picture, the out-of-time-order correlator (OTOC) is typically defined in two different but physically closely related ways:[3] [4] [5] [6] [7]
- Based on commutator of {\displaystyle W(t)} and {\displaystyle V(0)}:{\displaystyle C(t)=\langle [W(t),V(0)]^{\dagger }[W(t),V(0)]\rangle }direct calculation gives {\displaystyle C(t)=\langle V(0)^{\dagger }W(t)^{\dagger }W(t)V(0)\rangle +\langle W(t)^{\dagger }V(0)^{\dagger }V(0)W(t)\rangle -\langle V(0)^{\dagger }W(t)^{\dagger }V(0)W(t)\rangle -\langle W(t)^{\dagger }V(0)^{\dagger }W(t)V(0)\rangle .}
- More directly {\displaystyle F(t)=\langle W(t)^{\dagger }V(0)^{\dagger }W(t)V(0)\rangle }Generally {\displaystyle C(t)=\langle V(0)^{\dagger }W(t)^{\dagger }W(t)V(0)\rangle +\langle W(t)^{\dagger }V(0)^{\dagger }V(0)W(t)\rangle -2,円\mathrm {Re} ,円F(t).} When {\displaystyle V} and {\displaystyle W} are unitaries, we have {\displaystyle C(t)=2{\big (}1-\mathrm {Re} ,円F(t){\big )}.}
where the expectation value {\displaystyle \langle \bullet \rangle =\operatorname {Tr} [\rho ,円\bullet ]} is usually taken over some thermal state {\displaystyle \rho =\exp(-\beta H)/Z} with {\displaystyle \beta =1/k_{B}T} ({\displaystyle k_{B}} is Boltzmann constant, {\displaystyle T} is temperature) and {\displaystyle H} is Hamiltonian, {\displaystyle Z=\operatorname {Tr} \exp(-\beta H)} is canonical partition function.
Physically, the growth of this commutator measured by {\displaystyle C(t)} tracks scrambling. And from chaos theory perspective, we have {\displaystyle C(t)\simeq e^{\lambda _{L}t}} where {\displaystyle \lambda _{L}} is the quantum Lyapunov exponent. This has a similar form as the classical dependence of initial pertuvation in classical chaos theory. Thus OTOC can be regarded as an indicator of quantum chaos.
See also
[edit ]References
[edit ]- ^ Larkin, A. I.; Ovchinnikov, Yu N. (1969). "Quasiclassical Method in the Theory of Superconductivity". Soviet Journal of Experimental and Theoretical Physics. 28: 1200. Bibcode:1969JETP...28.1200L.
- ^ Li, J., Fan, R., Wang, H., Ye, B., Zeng, B., Zhai, H., Peng, X., Du, J. (19 July 2017). "Measuring Out-of-Time-Order Correlators on a Nuclear Magnetic Resonance Quantum Simulator". Physical Review X. 7 (3). American Physical Society (APS). doi:10.1103/physrevx.7.031011.
- ^ Kitaev, Alexei. "Hidden correlations in the Hawking radiation and thermal noise".
- ^ García-Mata, Ignacio; Jalabert, Rodolfo A.; Wisniacki, Diego Ariel (2023). "Out-of-time-order correlations and quantum chaos". Scholarpedia. 18 (4) 55237. doi:10.4249/scholarpedia.55237 . ISSN 1941-6016.
- ^ Shenker, Stephen H.; Stanford, Douglas (2014年03月13日). "Black holes and the butterfly effect". Journal of High Energy Physics. 2014 (3): 67. arXiv:1306.0622 . Bibcode:2014JHEP...03..067S. doi:10.1007/JHEP03(2014)067. ISSN 1029-8479.
- ^ Maldacena, Juan; Shenker, Stephen H.; Stanford, Douglas (2016年08月17日). "A bound on chaos". Journal of High Energy Physics. 2016 (8): 106. arXiv:1503.01409 . Bibcode:2016JHEP...08..106M. doi:10.1007/JHEP08(2016)106. ISSN 1029-8479.
- ^ Xu, Shenglong; Swingle, Brian (2024). "Scrambling Dynamics and Out-of-Time-Ordered Correlators in Quantum Many-Body Systems". PRX Quantum. 5 (1) 010201. arXiv:2202.07060 . Bibcode:2024PRXQ....5a0201X. doi:10.1103/PRXQuantum.5.010201.