Jump to content
Wikipedia The Free Encyclopedia

Out-of-time-ordered correlator

From Wikipedia, the free encyclopedia

In quantum physics, the out-of-time-ordered correlator (OTOC)[1] serves as a powerful diagnostic tool for characterizing quantum chaos, information scrambling, and other aspects of many-body dynamics. In addition, it provides a quantum mechanical analog to the Lyapunov exponent, often used to characterize the sensitivity of variables to initial conditions in classical chaos. The OTOC thus provides a natural extension of classical chaos theory to the quantum realm, and can be calculated both numerically and experimentally [2] .

Definition

[edit ]

For two observable V {\displaystyle V} {\displaystyle V} and W {\displaystyle W} {\displaystyle W} in Heisenberg picture, the out-of-time-order correlator (OTOC) is typically defined in two different but physically closely related ways:[3] [4] [5] [6] [7]

  1. Based on commutator of W ( t ) {\displaystyle W(t)} {\displaystyle W(t)} and V ( 0 ) {\displaystyle V(0)} {\displaystyle V(0)}: C ( t ) = [ W ( t ) , V ( 0 ) ] [ W ( t ) , V ( 0 ) ] {\displaystyle C(t)=\langle [W(t),V(0)]^{\dagger }[W(t),V(0)]\rangle } {\displaystyle C(t)=\langle [W(t),V(0)]^{\dagger }[W(t),V(0)]\rangle }direct calculation gives C ( t ) = V ( 0 ) W ( t ) W ( t ) V ( 0 ) + W ( t ) V ( 0 ) V ( 0 ) W ( t ) V ( 0 ) W ( t ) V ( 0 ) W ( t ) W ( t ) V ( 0 ) W ( t ) V ( 0 ) . {\displaystyle C(t)=\langle V(0)^{\dagger }W(t)^{\dagger }W(t)V(0)\rangle +\langle W(t)^{\dagger }V(0)^{\dagger }V(0)W(t)\rangle -\langle V(0)^{\dagger }W(t)^{\dagger }V(0)W(t)\rangle -\langle W(t)^{\dagger }V(0)^{\dagger }W(t)V(0)\rangle .} {\displaystyle C(t)=\langle V(0)^{\dagger }W(t)^{\dagger }W(t)V(0)\rangle +\langle W(t)^{\dagger }V(0)^{\dagger }V(0)W(t)\rangle -\langle V(0)^{\dagger }W(t)^{\dagger }V(0)W(t)\rangle -\langle W(t)^{\dagger }V(0)^{\dagger }W(t)V(0)\rangle .}
  2. More directly F ( t ) = W ( t ) V ( 0 ) W ( t ) V ( 0 ) {\displaystyle F(t)=\langle W(t)^{\dagger }V(0)^{\dagger }W(t)V(0)\rangle } {\displaystyle F(t)=\langle W(t)^{\dagger }V(0)^{\dagger }W(t)V(0)\rangle }Generally C ( t ) = V ( 0 ) W ( t ) W ( t ) V ( 0 ) + W ( t ) V ( 0 ) V ( 0 ) W ( t ) 2 R e F ( t ) . {\displaystyle C(t)=\langle V(0)^{\dagger }W(t)^{\dagger }W(t)V(0)\rangle +\langle W(t)^{\dagger }V(0)^{\dagger }V(0)W(t)\rangle -2,円\mathrm {Re} ,円F(t).} {\displaystyle C(t)=\langle V(0)^{\dagger }W(t)^{\dagger }W(t)V(0)\rangle +\langle W(t)^{\dagger }V(0)^{\dagger }V(0)W(t)\rangle -2,円\mathrm {Re} ,円F(t).} When V {\displaystyle V} {\displaystyle V} and W {\displaystyle W} {\displaystyle W} are unitaries, we have C ( t ) = 2 ( 1 R e F ( t ) ) . {\displaystyle C(t)=2{\big (}1-\mathrm {Re} ,円F(t){\big )}.} {\displaystyle C(t)=2{\big (}1-\mathrm {Re} ,円F(t){\big )}.}

where the expectation value = Tr [ ρ ] {\displaystyle \langle \bullet \rangle =\operatorname {Tr} [\rho ,円\bullet ]} {\displaystyle \langle \bullet \rangle =\operatorname {Tr} [\rho ,円\bullet ]} is usually taken over some thermal state ρ = exp ( β H ) / Z {\displaystyle \rho =\exp(-\beta H)/Z} {\displaystyle \rho =\exp(-\beta H)/Z} with β = 1 / k B T {\displaystyle \beta =1/k_{B}T} {\displaystyle \beta =1/k_{B}T} ( k B {\displaystyle k_{B}} {\displaystyle k_{B}} is Boltzmann constant, T {\displaystyle T} {\displaystyle T} is temperature) and H {\displaystyle H} {\displaystyle H} is Hamiltonian, Z = Tr exp ( β H ) {\displaystyle Z=\operatorname {Tr} \exp(-\beta H)} {\displaystyle Z=\operatorname {Tr} \exp(-\beta H)} is canonical partition function.

Physically, the growth of this commutator measured by C ( t ) {\displaystyle C(t)} {\displaystyle C(t)} tracks scrambling. And from chaos theory perspective, we have C ( t ) e λ L t {\displaystyle C(t)\simeq e^{\lambda _{L}t}} {\displaystyle C(t)\simeq e^{\lambda _{L}t}} where λ L {\displaystyle \lambda _{L}} {\displaystyle \lambda _{L}} is the quantum Lyapunov exponent. This has a similar form as the classical dependence of initial pertuvation in classical chaos theory. Thus OTOC can be regarded as an indicator of quantum chaos.

See also

[edit ]

Quantum chaos

SYK model

Chaos theory

References

[edit ]
  1. ^ Larkin, A. I.; Ovchinnikov, Yu N. (1969). "Quasiclassical Method in the Theory of Superconductivity". Soviet Journal of Experimental and Theoretical Physics. 28: 1200. Bibcode:1969JETP...28.1200L.
  2. ^ Li, J., Fan, R., Wang, H., Ye, B., Zeng, B., Zhai, H., Peng, X., Du, J. (19 July 2017). "Measuring Out-of-Time-Order Correlators on a Nuclear Magnetic Resonance Quantum Simulator". Physical Review X. 7 (3). American Physical Society (APS). doi:10.1103/physrevx.7.031011.
  3. ^ Kitaev, Alexei. "Hidden correlations in the Hawking radiation and thermal noise".
  4. ^ García-Mata, Ignacio; Jalabert, Rodolfo A.; Wisniacki, Diego Ariel (2023). "Out-of-time-order correlations and quantum chaos". Scholarpedia. 18 (4) 55237. doi:10.4249/scholarpedia.55237 . ISSN 1941-6016.
  5. ^ Shenker, Stephen H.; Stanford, Douglas (2014年03月13日). "Black holes and the butterfly effect". Journal of High Energy Physics. 2014 (3): 67. arXiv:1306.0622 . Bibcode:2014JHEP...03..067S. doi:10.1007/JHEP03(2014)067. ISSN 1029-8479.
  6. ^ Maldacena, Juan; Shenker, Stephen H.; Stanford, Douglas (2016年08月17日). "A bound on chaos". Journal of High Energy Physics. 2016 (8): 106. arXiv:1503.01409 . Bibcode:2016JHEP...08..106M. doi:10.1007/JHEP08(2016)106. ISSN 1029-8479.
  7. ^ Xu, Shenglong; Swingle, Brian (2024). "Scrambling Dynamics and Out-of-Time-Ordered Correlators in Quantum Many-Body Systems". PRX Quantum. 5 (1) 010201. arXiv:2202.07060 . Bibcode:2024PRXQ....5a0201X. doi:10.1103/PRXQuantum.5.010201.

AltStyle によって変換されたページ (->オリジナル) /