Jump to content
Wikipedia The Free Encyclopedia

Optimized effective potential method

From Wikipedia, the free encyclopedia
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Optimized effective potential method" – news · newspapers · books · scholar · JSTOR
(March 2025) (Learn how and when to remove this message)
Quantum-mechanical framework for simulating molecules and solids
Electronic structure methods
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Møller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Adiabatic connection fluctuation dissipation theorem
Görling-Levy pertubation theory
Optimized effective potential method
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation
Korringa–Kohn–Rostoker method

The Optimized effective potential method (OEP)[1] [2] in Kohn-Sham (KS) density functional theory (DFT) [3] [4] is a method to determine the potentials as functional derivatives of the corresponding KS orbital-dependent energy density functionals. This can be in principle done for any arbitrary orbital-dependent functional, but is most common for exchange energy as the so called Exact exchange method (EXX)[5] [6] , which will be considered here.

Origin

[edit ]

Originally the OEP method was developed more than 10 years prior to the work of Pierre Hohenberg [3] , Walter Kohn and Lu Jeu Sham [4] in 1953 by R. T. Sharp and G. K. Horton [7] in order to investigate, what happens to Hartree-Fock (HF) theory [8] [9] [10] [11] [12] when instead of the regular nonlocal exchange potential a local exchange potential is demanded. Much later since 1990 it was found out that this ansatz is useful in density functional theory.

Background via chain rule

[edit ]

In density functional theory the exchange correlation (xc) potential is defined as the functional derivative of the exchange correlation (xc) energy with respect to the electron density

v x c ( r ) δ E x c [ ρ ] δ ρ ( r ) = δ E x c [ { ϕ s } ] δ ρ ( r ) {\displaystyle v_{xc}(r)\equiv {\frac {\delta E_{xc}[\rho ]}{\delta \rho (r)}}={\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \rho (r)}}} {\displaystyle v_{xc}(r)\equiv {\frac {\delta E_{xc}[\rho ]}{\delta \rho (r)}}={\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \rho (r)}}} 1

where the index s {\displaystyle s} {\displaystyle s} denotes either occupied or unoccupied KS orbitals. The problem is that, although the xc energy is in principle due to the Hohenberg-Kohn (HK) theorem [3] a functional of the density its explicit dependence of the density is unknown (only known in the simple Local density approximation (LDA) [3] case), but rather its implicit dependence through the KS orbitals. That motivates the use of the chain rule


v x c ( r ) = d r s [ δ E x c [ { ϕ s } ] δ ϕ s ( r ) δ ϕ s ( r ) δ ρ ( r ) + c . c . ] {\displaystyle v_{xc}(r)=\int dr'\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta \rho (r)}}+c.c.{\bigg ]}} {\displaystyle v_{xc}(r)=\int dr'\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta \rho (r)}}+c.c.{\bigg ]}}

But unfortunately the functional derivative δ ϕ s / δ ρ {\displaystyle \delta \phi _{s}/\delta \rho } {\displaystyle \delta \phi _{s}/\delta \rho }, despite ist existence, is also unknown. So one needs to invoke the chain rule once more, now with respect to the Kohn-Sham (KS) potential

v x c ( r ) = d r d r s [ δ E x c [ { ϕ s } ] δ ϕ s ( r ) δ ϕ s ( r ) δ v S ( r ) δ v S ( r ) δ ρ ( r ) X S 1 ( r , r ) + c . c . ] {\displaystyle v_{xc}(r)=\iint dr'dr''\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}\underbrace {\frac {\delta v_{S}(r'')}{\delta \rho (r)}} _{\equiv X_{S}^{-1}(r,r')}+c.c.{\bigg ]}} {\displaystyle v_{xc}(r)=\iint dr'dr''\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}\underbrace {\frac {\delta v_{S}(r'')}{\delta \rho (r)}} _{\equiv X_{S}^{-1}(r,r')}+c.c.{\bigg ]}}

where X S 1 ( r , r ) {\displaystyle X_{S}^{-1}(r,r')} {\displaystyle X_{S}^{-1}(r,r')} is by definition the inverse static Kohn-Sham (KS) response function.

Formalism

[edit ]

The KS orbital-dependent exact exchange energy (EXX) is given in Chemist's notation as

E x [ { ϕ s } ] = 1 2 i j ( i j | j i ) {\displaystyle E_{x}[\{\phi _{s}\}]=-{\frac {1}{2}}\sum _{i}\sum _{j}(ij|ji)} {\displaystyle E_{x}[\{\phi _{s}\}]=-{\frac {1}{2}}\sum _{i}\sum _{j}(ij|ji)}

The static Kohn-Sham (KS) response function is given as

X S ( r , r ) δ ρ ( r ) δ v S ( r ) = i a [ ϕ i ( r ) ϕ a ( r ) ϕ a ( r ) ϕ i ( r ) ε i ε a + c . c . ] {\displaystyle X_{S}(r,r')\equiv {\frac {\delta \rho (r)}{\delta v_{S}(r')}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\phi _{a}^{\dagger }(r')\phi _{i}(r')}{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} {\displaystyle X_{S}(r,r')\equiv {\frac {\delta \rho (r)}{\delta v_{S}(r')}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\phi _{a}^{\dagger }(r')\phi _{i}(r')}{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} 2

where the indices i {\displaystyle i} {\displaystyle i} denote occupied and a {\displaystyle a} {\displaystyle a} unoccupied KS orbitals, c . c . {\displaystyle c.c.} {\displaystyle c.c.} the complex conjugate. the right hand side (r.h.s.) of the OEP equation is

t ( r ) = δ E x c [ { ϕ i } ] δ v S ( r ) = i a [ ϕ i ( r ) ϕ a ( r ) ϕ a | v ^ x NL | ϕ i ε i ε a + c . c . ] {\displaystyle t(r)={\frac {\delta E_{xc}[\{\phi _{i}\}]}{\delta v_{S}(r)}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\langle \phi _{a}|{\hat {v}}_{x}^{\text{NL}}|\phi _{i}\rangle }{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} {\displaystyle t(r)={\frac {\delta E_{xc}[\{\phi _{i}\}]}{\delta v_{S}(r)}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\langle \phi _{a}|{\hat {v}}_{x}^{\text{NL}}|\phi _{i}\rangle }{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} 3

where v ^ x NL {\displaystyle {\hat {v}}_{x}^{\text{NL}}} {\displaystyle {\hat {v}}_{x}^{\text{NL}}} is the nonlocal exchange operator from Hartree-Fock (HF) theory but evaluated with KS orbitals stemming from the functional derivative δ E x c [ { ϕ i } ] / δ ϕ i ( r ) {\displaystyle \delta E_{xc}[\{\phi _{i}\}]/\delta \phi _{i}(r')} {\displaystyle \delta E_{xc}[\{\phi _{i}\}]/\delta \phi _{i}(r')}. Lastly note that the following functional derivative is given by first order static pertubation theory exactly

δ ϕ s ( r ) δ v S ( r ) = ϕ i ( r ) t , t i ϕ t ( r ) ϕ t ( r ) ε i ε t G ( r , r ) {\displaystyle {\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}=\phi _{i}(r')\underbrace {\sum _{t,t\neq i}{\frac {\phi _{t}^{\dagger }(r')\phi _{t}(r)}{\varepsilon _{i}-\varepsilon _{t}}}} _{G(r,r')}} {\displaystyle {\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}=\phi _{i}(r')\underbrace {\sum _{t,t\neq i}{\frac {\phi _{t}^{\dagger }(r')\phi _{t}(r)}{\varepsilon _{i}-\varepsilon _{t}}}} _{G(r,r')}}

which is a Green's function. Combining eqs. (1), (2) and (3) leads to the Optimized Effective Potential (OEP) Integral equation

d r v x ( r ) X S ( r , r ) = t ( r ) {\displaystyle \int dr'v_{x}(r')X_{S}(r,r')=t(r)} {\displaystyle \int dr'v_{x}(r')X_{S}(r,r')=t(r)}

Implementation with a basis set

[edit ]

Usually the exchange potential is expanded in an auxiliary basis set (RI basis) { f μ } {\displaystyle \{f_{\mu }\}} {\displaystyle \{f_{\mu }\}} as v x ( r ) = ν v x , ν f ν ( r ) {\displaystyle v_{x}(r)=\sum _{\nu }v_{x,\nu }f_{\nu }(r)} {\displaystyle v_{x}(r)=\sum _{\nu }v_{x,\nu }f_{\nu }(r)} together with the regular orbital basis { χ λ } {\displaystyle \{\chi _{\lambda }\}} {\displaystyle \{\chi _{\lambda }\}} requiring the so called 3-index integrals of the form ( f ν | χ λ χ κ ) {\displaystyle (f_{\nu }|\chi _{\lambda }\chi _{\kappa })} {\displaystyle (f_{\nu }|\chi _{\lambda }\chi _{\kappa })} as the linear algebra problem

X S v x = t {\displaystyle {\textbf {X}}_{\text{S}}{\textbf {v}}_{\text{x}}={\textbf {t}}} {\displaystyle {\textbf {X}}_{\text{S}}{\textbf {v}}_{\text{x}}={\textbf {t}}}

Lastly it shall be noted, that many OEP codes suffer from numerical issues.

References

[edit ]
  1. ^ Kümmel, S.; Perdew, J. P. (2003). "Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange potential". Physical Review B. 68: 035103. doi:10.1103/PhysRevB.68.035103.
  2. ^ Krieger, J. B.; Li, Y.; Iafrate, G. J. (1992). "Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory". Physical Review A. 45: 101. doi:10.1103/PhysRevA.45.101.
  3. ^ a b c d Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864 .
  4. ^ a b Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.140.A1133 .
  5. ^ Görling, A.; Levy, M. (1994). "Exact Kohn-Sham scheme based on perturbation theory". Physical Review A. 50: 196. doi:10.1103/PhysRevA.50.196.
  6. ^ Görling A. (1995). "Exact treatment of exchange in Kohn-Sham band-structure schemes". Physical Review B. 53: 7024. doi:10.1103/PhysRevB.53.7024.
  7. ^ Sharp, R. T.; Horton, G. K. (1953). "A Variational Approach to the Unipotential Many-Electron Problem". Physical Review. 90: 317. doi:10.1103/PhysRev.90.317.
  8. ^ Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field". Mathematical Proceedings of the Cambridge Philosophical Society . 24 (1): 111. Bibcode:1928PCPS...24..111H. doi:10.1017/S0305004100011920. S2CID 121520012.
  9. ^ Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Physical Review . 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339.
  10. ^ Gaunt, J. A. (1928). "A Theory of Hartree's Atomic Fields". Mathematical Proceedings of the Cambridge Philosophical Society . 24 (2): 328–342. Bibcode:1928PCPS...24..328G. doi:10.1017/S0305004100015851. S2CID 119685329.
  11. ^ Slater, J. C. (1930). "Note on Hartree's Method". Physical Review . 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2.
  12. ^ Fock, V. A. (1930). "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems". Zeitschrift für Physik (in German). 61 (1): 126–148. Bibcode:1930ZPhy...61..126F. doi:10.1007/BF01340294. S2CID 125419115. Fock, V. A. (1930). ""Selfconsistent field" mit Austausch für Natrium". Zeitschrift für Physik (in German). 62 (11): 795–805. Bibcode:1930ZPhy...62..795F. doi:10.1007/BF01330439. S2CID 120921212.

AltStyle によって変換されたページ (->オリジナル) /