Ohnesorge number
The Ohnesorge number (Oh) is a dimensionless number that relates the viscous forces to inertial and surface tension forces. The number was defined by Wolfgang von Ohnesorge in his 1936 doctoral thesis.[1] [2]
It is defined as:
- {\displaystyle \mathrm {Oh} ={\frac {\mu }{\sqrt {\rho ,円\sigma ,円L}}}={\frac {\sqrt {\mathrm {We} }}{\mathrm {Re} }}\sim {\frac {\mbox{viscous forces}}{\sqrt {{\mbox{inertia}}\cdot {\mbox{surface tension}}}}}}
Where
- μ is the dynamic viscosity of the liquid
- ρ is the density of the liquid
- σ is the surface tension
- L is the characteristic length scale (typically drop diameter)
- Re is the Reynolds number
- We is the Weber number
Applications
[edit ]The Ohnesorge number for a 3 mm diameter rain drop is typically ~0.002. Larger Ohnesorge numbers indicate a greater influence of the viscosity.
This is often used to relate to free surface fluid dynamics such as dispersion of liquids in gases and in spray technology.[3] [4]
In inkjet printing, liquids whose Ohnesorge number are in the range 0.1 < Oh < 1.0 are jettable (1<Z<10 where Z is the reciprocal of the Ohnesorge number).[1] [5]
See also
[edit ]- Laplace number - There is an inverse relationship, {\displaystyle \mathrm {Oh} =1/{\sqrt {\mathrm {La} }}}, between the Laplace number and the Ohnesorge number. It is more historically correct to use the Ohnesorge number, but often mathematically neater to use the Laplace number.
References
[edit ]- ^ a b McKinley, Gareth H.; Renardy, Michael (2011). "Wolfgang von Ohnesorge". Physics of Fluids . 23 (12): 127101–127101–6. Bibcode:2011PhFl...23l7101M. doi:10.1063/1.3663616. hdl:10919/24403 . S2CID 50633355.
- ^ Fardin, Marc-Antoine; Hautefeuille, Mathieu; Sharma, Vivek (2022). "Spreading, pinching, and coalescence: the Ohnesorge units". Soft Matter . 18 (17): 3291–3303. arXiv:2112.06713 . Bibcode:2022SMat...18.3291F. doi:10.1039/d2sm00069e. PMID 35416235. S2CID 245123849.
- ^ Lefebvre, Arthur Henry (1989). Atomization and Sprays. New York and Washington, D.C.: Hemisphere Publishing Corp. ISBN 978-0-89116-603-0. OCLC 18560155.
- ^ Ohnesorge, W (1936). "Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen". Zeitschrift für Angewandte Mathematik und Mechanik . 16 (6): 355–358. Bibcode:1936ZaMM...16..355O. doi:10.1002/zamm.19360160611. English translation: Ohnesorge, Wolfgang von (2019). "The formation of drops by nozzles and the breakup of liquid jets". Texas Scholar Works. doi:10.26153/tsw/3391. S2CID 214403876.
- ^ Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution" (PDF). Annual Review of Materials Research . 40 (1): 395–414. Bibcode:2010AnRMS..40..395D. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331. S2CID 138001742.
This fluid dynamics–related article is a stub. You can help Wikipedia by expanding it.