Liang–Barsky algorithm
In computer graphics, the Liang–Barsky algorithm (named after You-Dong Liang and Brian A. Barsky) is a line clipping algorithm. The Liang–Barsky algorithm uses the parametric equation of a line and inequalities describing the range of the clipping window to determine the intersections between the line and the clip window. With these intersections, it knows which portion of the line should be drawn. So this algorithm is significantly more efficient than Cohen–Sutherland. The idea of the Liang–Barsky clipping algorithm is to do as much testing as possible before computing line intersections.
The algorithm uses the parametric form of a straight line:
- {\displaystyle x=x_{0}+t(x_{1}-x_{0})=x_{0}+t\Delta x,}
- {\displaystyle y=y_{0}+t(y_{1}-y_{0})=y_{0}+t\Delta y.}
A point is in the clip window, if
- {\displaystyle x_{\text{min}}\leq x_{0}+t\Delta x\leq x_{\text{max}}}
and
- {\displaystyle y_{\text{min}}\leq y_{0}+t\Delta y\leq y_{\text{max}},}
which can be expressed as the 4 inequalities
- {\displaystyle tp_{i}\leq q_{i},\quad i=1,2,3,4,}
where
- {\displaystyle {\begin{aligned}p_{1}&=-\Delta x,&q_{1}&=x_{0}-x_{\text{min}},&&{\text{(left)}}\\p_{2}&=\Delta x,&q_{2}&=x_{\text{max}}-x_{0},&&{\text{(right)}}\\p_{3}&=-\Delta y,&q_{3}&=y_{0}-y_{\text{min}},&&{\text{(bottom)}}\\p_{4}&=\Delta y,&q_{4}&=y_{\text{max}}-y_{0}.&&{\text{(top)}}\end{aligned}}}
To compute the final line segment:
- A line parallel to a clipping window edge has {\displaystyle p_{i}=0} for that boundary.
- If for that {\displaystyle i}, {\displaystyle q_{i}<0}, then the line is completely outside and can be eliminated.
- When {\displaystyle p_{i}<0}, the line proceeds outside to inside the clip window, and when {\displaystyle p_{i}>0}, the line proceeds inside to outside.
- For nonzero {\displaystyle p_{i}}, {\displaystyle u=q_{i}/p_{i}} gives {\displaystyle t} for the intersection point of the line and the window edge (possibly projected).
- The two actual intersections of the line with the window edges, if they exist, are described by {\displaystyle u_{1}} and {\displaystyle u_{2}}, calculated as follows. For {\displaystyle u_{1}}, look at boundaries for which {\displaystyle p_{i}<0} (i.e. outside to inside). Take {\displaystyle u_{1}} to be the largest among {\displaystyle \{0,q_{i}/p_{i}\}}. For {\displaystyle u_{2}}, look at boundaries for which {\displaystyle p_{i}>0} (i.e. inside to outside). Take {\displaystyle u_{2}} to be the minimum of {\displaystyle \{1,q_{i}/p_{i}\}}.
- If {\displaystyle u_{1}>u_{2}}, the line is entirely outside the clip window. If {\displaystyle u_{1}<0<1<u_{2}} it is entirely inside it.
// Liang—Barsky line-clipping algorithm #include<iostream> #include<graphics.h> #include<math.h> usingnamespacestd; // this function gives the maximum floatmaxi(floatarr[],intn){ floatm=0; for(inti=0;i<n;++i) if(m<arr[i]) m=arr[i]; returnm; } // this function gives the minimum floatmini(floatarr[],intn){ floatm=1; for(inti=0;i<n;++i) if(m>arr[i]) m=arr[i]; returnm; } voidliang_barsky_clipper(floatxmin,floatymin,floatxmax,floatymax, floatx1,floaty1,floatx2,floaty2){ // defining variables floatp1=-(x2-x1); floatp2=-p1; floatp3=-(y2-y1); floatp4=-p3; floatq1=x1-xmin; floatq2=xmax-x1; floatq3=y1-ymin; floatq4=ymax-y1; floatposarr[5],negarr[5]; intposind=1,negind=1; posarr[0]=1; negarr[0]=0; rectangle(xmin,ymin,xmax,ymax);// drawing the clipping window if((p1==0&&q1<0)||(p2==0&&q2<0)||(p3==0&&q3<0)||(p4==0&&q4<0)){ outtextxy(80,80,"Line is parallel to clipping window!"); return; } if(p1!=0){ floatr1=q1/p1; floatr2=q2/p2; if(p1<0){ negarr[negind++]=r1;// for negative p1, add it to negative array posarr[posind++]=r2;// and add p2 to positive array }else{ negarr[negind++]=r2; posarr[posind++]=r1; } } if(p3!=0){ floatr3=q3/p3; floatr4=q4/p4; if(p3<0){ negarr[negind++]=r3; posarr[posind++]=r4; }else{ negarr[negind++]=r4; posarr[posind++]=r3; } } floatxn1,yn1,xn2,yn2; floatrn1,rn2; rn1=maxi(negarr,negind);// maximum of negative array rn2=mini(posarr,posind);// minimum of positive array if(rn1>rn2){// reject outtextxy(80,80,"Line is outside the clipping window!"); return; } xn1=x1+p2*rn1; yn1=y1+p4*rn1;// computing new points xn2=x1+p2*rn2; yn2=y1+p4*rn2; setcolor(CYAN); line(xn1,yn1,xn2,yn2);// the drawing the new line setlinestyle(1,1,0); line(x1,y1,xn1,yn1); line(x2,y2,xn2,yn2); } intmain(){ cout<<"\nLiang-barsky line clipping"; cout<<"\nThe system window outlay is: (0,0) at bottom left and (631, 467) at top right"; cout<<"\nEnter the co-ordinates of the window(wxmin, wymin, wxmax, wymax):"; floatxmin,ymin,xmax,ymax; cin>>xmin>>ymin>>xmax>>ymax; cout<<"\nEnter the end points of the line (x1, y1) and (x2, y2):"; floatx1,y1,x2,y2; cin>>x1>>y1>>x2>>y2; intgd=DETECT,gm; // using the winbgim library for C++, initializing the graphics mode initgraph(&gd,&gm,""); liang_barsky_clipper(xmin,ymin,xmax,ymax,x1,y1,x2,y2); getch(); closegraph(); }
See also
[edit ]Algorithms used for the same purpose:
References
[edit ]- Liang, Y. D., and Barsky, B., "A New Concept and Method for Line Clipping", ACM Transactions on Graphics, 3(1):1–22, January 1984.
- Liang, Y. D., B. A., Barsky, and M. Slater, Some Improvements to a Parametric Line Clipping Algorithm , CSD-92-688, Computer Science Division, University of California, Berkeley, 1992.
- James D. Foley. Computer graphics: principles and practice . Addison-Wesley Professional, 1996. p. 117.