Jump to content
Wikipedia The Free Encyclopedia

Liang–Barsky algorithm

From Wikipedia, the free encyclopedia
Line-clipping algorithm

In computer graphics, the Liang–Barsky algorithm (named after You-Dong Liang and Brian A. Barsky) is a line clipping algorithm. The Liang–Barsky algorithm uses the parametric equation of a line and inequalities describing the range of the clipping window to determine the intersections between the line and the clip window. With these intersections, it knows which portion of the line should be drawn. So this algorithm is significantly more efficient than Cohen–Sutherland. The idea of the Liang–Barsky clipping algorithm is to do as much testing as possible before computing line intersections.

The algorithm uses the parametric form of a straight line:

x = x 0 + t ( x 1 x 0 ) = x 0 + t Δ x , {\displaystyle x=x_{0}+t(x_{1}-x_{0})=x_{0}+t\Delta x,} {\displaystyle x=x_{0}+t(x_{1}-x_{0})=x_{0}+t\Delta x,}
y = y 0 + t ( y 1 y 0 ) = y 0 + t Δ y . {\displaystyle y=y_{0}+t(y_{1}-y_{0})=y_{0}+t\Delta y.} {\displaystyle y=y_{0}+t(y_{1}-y_{0})=y_{0}+t\Delta y.}

A point is in the clip window, if

x min x 0 + t Δ x x max {\displaystyle x_{\text{min}}\leq x_{0}+t\Delta x\leq x_{\text{max}}} {\displaystyle x_{\text{min}}\leq x_{0}+t\Delta x\leq x_{\text{max}}}

and

y min y 0 + t Δ y y max , {\displaystyle y_{\text{min}}\leq y_{0}+t\Delta y\leq y_{\text{max}},} {\displaystyle y_{\text{min}}\leq y_{0}+t\Delta y\leq y_{\text{max}},}

which can be expressed as the 4 inequalities

t p i q i , i = 1 , 2 , 3 , 4 , {\displaystyle tp_{i}\leq q_{i},\quad i=1,2,3,4,} {\displaystyle tp_{i}\leq q_{i},\quad i=1,2,3,4,}

where

p 1 = Δ x , q 1 = x 0 x min , (left) p 2 = Δ x , q 2 = x max x 0 , (right) p 3 = Δ y , q 3 = y 0 y min , (bottom) p 4 = Δ y , q 4 = y max y 0 . (top) {\displaystyle {\begin{aligned}p_{1}&=-\Delta x,&q_{1}&=x_{0}-x_{\text{min}},&&{\text{(left)}}\\p_{2}&=\Delta x,&q_{2}&=x_{\text{max}}-x_{0},&&{\text{(right)}}\\p_{3}&=-\Delta y,&q_{3}&=y_{0}-y_{\text{min}},&&{\text{(bottom)}}\\p_{4}&=\Delta y,&q_{4}&=y_{\text{max}}-y_{0}.&&{\text{(top)}}\end{aligned}}} {\displaystyle {\begin{aligned}p_{1}&=-\Delta x,&q_{1}&=x_{0}-x_{\text{min}},&&{\text{(left)}}\\p_{2}&=\Delta x,&q_{2}&=x_{\text{max}}-x_{0},&&{\text{(right)}}\\p_{3}&=-\Delta y,&q_{3}&=y_{0}-y_{\text{min}},&&{\text{(bottom)}}\\p_{4}&=\Delta y,&q_{4}&=y_{\text{max}}-y_{0}.&&{\text{(top)}}\end{aligned}}}

To compute the final line segment:

  1. A line parallel to a clipping window edge has p i = 0 {\displaystyle p_{i}=0} {\displaystyle p_{i}=0} for that boundary.
  2. If for that i {\displaystyle i} {\displaystyle i}, q i < 0 {\displaystyle q_{i}<0} {\displaystyle q_{i}<0}, then the line is completely outside and can be eliminated.
  3. When p i < 0 {\displaystyle p_{i}<0} {\displaystyle p_{i}<0}, the line proceeds outside to inside the clip window, and when p i > 0 {\displaystyle p_{i}>0} {\displaystyle p_{i}>0}, the line proceeds inside to outside.
  4. For nonzero p i {\displaystyle p_{i}} {\displaystyle p_{i}}, u = q i / p i {\displaystyle u=q_{i}/p_{i}} {\displaystyle u=q_{i}/p_{i}} gives t {\displaystyle t} {\displaystyle t} for the intersection point of the line and the window edge (possibly projected).
  5. The two actual intersections of the line with the window edges, if they exist, are described by u 1 {\displaystyle u_{1}} {\displaystyle u_{1}} and u 2 {\displaystyle u_{2}} {\displaystyle u_{2}}, calculated as follows. For u 1 {\displaystyle u_{1}} {\displaystyle u_{1}}, look at boundaries for which p i < 0 {\displaystyle p_{i}<0} {\displaystyle p_{i}<0} (i.e. outside to inside). Take u 1 {\displaystyle u_{1}} {\displaystyle u_{1}} to be the largest among { 0 , q i / p i } {\displaystyle \{0,q_{i}/p_{i}\}} {\displaystyle \{0,q_{i}/p_{i}\}}. For u 2 {\displaystyle u_{2}} {\displaystyle u_{2}}, look at boundaries for which p i > 0 {\displaystyle p_{i}>0} {\displaystyle p_{i}>0} (i.e. inside to outside). Take u 2 {\displaystyle u_{2}} {\displaystyle u_{2}} to be the minimum of { 1 , q i / p i } {\displaystyle \{1,q_{i}/p_{i}\}} {\displaystyle \{1,q_{i}/p_{i}\}}.
  6. If u 1 > u 2 {\displaystyle u_{1}>u_{2}} {\displaystyle u_{1}>u_{2}}, the line is entirely outside the clip window. If u 1 < 0 < 1 < u 2 {\displaystyle u_{1}<0<1<u_{2}} {\displaystyle u_{1}<0<1<u_{2}} it is entirely inside it.
// Liang—Barsky line-clipping algorithm
#include<iostream>
#include<graphics.h>
#include<math.h>
usingnamespacestd;
// this function gives the maximum
floatmaxi(floatarr[],intn){
floatm=0;
for(inti=0;i<n;++i)
if(m<arr[i])
m=arr[i];
returnm;
}
// this function gives the minimum
floatmini(floatarr[],intn){
floatm=1;
for(inti=0;i<n;++i)
if(m>arr[i])
m=arr[i];
returnm;
}
voidliang_barsky_clipper(floatxmin,floatymin,floatxmax,floatymax,
floatx1,floaty1,floatx2,floaty2){
// defining variables
floatp1=-(x2-x1);
floatp2=-p1;
floatp3=-(y2-y1);
floatp4=-p3;
floatq1=x1-xmin;
floatq2=xmax-x1;
floatq3=y1-ymin;
floatq4=ymax-y1;
floatposarr[5],negarr[5];
intposind=1,negind=1;
posarr[0]=1;
negarr[0]=0;
rectangle(xmin,ymin,xmax,ymax);// drawing the clipping window
if((p1==0&&q1<0)||(p2==0&&q2<0)||(p3==0&&q3<0)||(p4==0&&q4<0)){
outtextxy(80,80,"Line is parallel to clipping window!");
return;
}
if(p1!=0){
floatr1=q1/p1;
floatr2=q2/p2;
if(p1<0){
negarr[negind++]=r1;// for negative p1, add it to negative array
posarr[posind++]=r2;// and add p2 to positive array
}else{
negarr[negind++]=r2;
posarr[posind++]=r1;
}
}
if(p3!=0){
floatr3=q3/p3;
floatr4=q4/p4;
if(p3<0){
negarr[negind++]=r3;
posarr[posind++]=r4;
}else{
negarr[negind++]=r4;
posarr[posind++]=r3;
}
}
floatxn1,yn1,xn2,yn2;
floatrn1,rn2;
rn1=maxi(negarr,negind);// maximum of negative array
rn2=mini(posarr,posind);// minimum of positive array
if(rn1>rn2){// reject
outtextxy(80,80,"Line is outside the clipping window!");
return;
}
xn1=x1+p2*rn1;
yn1=y1+p4*rn1;// computing new points
xn2=x1+p2*rn2;
yn2=y1+p4*rn2;
setcolor(CYAN);
line(xn1,yn1,xn2,yn2);// the drawing the new line
setlinestyle(1,1,0);
line(x1,y1,xn1,yn1);
line(x2,y2,xn2,yn2);
}
intmain(){
cout<<"\nLiang-barsky line clipping";
cout<<"\nThe system window outlay is: (0,0) at bottom left and (631, 467) at top right";
cout<<"\nEnter the co-ordinates of the window(wxmin, wymin, wxmax, wymax):";
floatxmin,ymin,xmax,ymax;
cin>>xmin>>ymin>>xmax>>ymax;
cout<<"\nEnter the end points of the line (x1, y1) and (x2, y2):";
floatx1,y1,x2,y2;
cin>>x1>>y1>>x2>>y2;
intgd=DETECT,gm;
// using the winbgim library for C++, initializing the graphics mode
initgraph(&gd,&gm,"");
liang_barsky_clipper(xmin,ymin,xmax,ymax,x1,y1,x2,y2);
getch();
closegraph();
}

See also

[edit ]

Algorithms used for the same purpose:

References

[edit ]
[edit ]

AltStyle によって変換されたページ (->オリジナル) /