Lagrange reversion theorem
In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions.
Let {\displaystyle v} be a function of {\displaystyle x} and {\displaystyle y} in terms of another function {\displaystyle f} such that
- {\displaystyle v=x+yf(v)}
Then for any function {\displaystyle g}, for small enough {\displaystyle y}:
- {\displaystyle g(v)=g(x)+\sum _{k=1}^{\infty }{\frac {y^{k}}{k!}}\left({\frac {\partial }{\partial x}}\right)^{k-1}\left(f(x)^{k}g'(x)\right).}
In particular, if {\displaystyle g} is the identity function {\displaystyle g(x)=x}, this reduces to
- {\displaystyle v=x+\sum _{k=1}^{\infty }{\frac {y^{k}}{k!}}\left({\frac {\partial }{\partial x}}\right)^{k-1}\left(f(x)^{k}\right),}
in which case the equation can be derived using perturbation theory.
In 1770, Joseph Louis Lagrange (1736–1813) published his power series solution of the implicit equation for {\displaystyle v} mentioned above. However, his solution used cumbersome series expansions of logarithms.[1] [2] In 1780, Pierre-Simon Laplace (1749–1827) published a simpler proof of the theorem, which was based on relations between partial derivatives with respect to the variable {\displaystyle x} and the parameter {\displaystyle y}.[3] [4] [5] Charles Hermite (1822–1901) presented the most straightforward proof of the theorem by using contour integration.[6] [7] [8]
Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation.
Simple proof
[edit ]We start by writing
- {\displaystyle g(v)=\int \delta (yf(z)-z+x)g(z)(1-yf'(z)),円dz.}
Writing the delta-function as an integral, we have:
- {\displaystyle {\begin{aligned}g(v)&=\iint \exp(\mathrm {i} k[yf(z)-z+x])g(z)(1-yf'(z)),円{\frac {dk}{2\pi }},円dz\\[10pt]&=\sum _{n=0}^{\infty }\iint {\frac {(\mathrm {i} kyf(z))^{n}}{n!}}g(z)(1-yf'(z))\mathrm {e} ^{\mathrm {i} k(x-z)},円{\frac {dk}{2\pi }},円dz\\[10pt]&=\sum _{n=0}^{\infty }\left({\frac {\partial }{\partial x}}\right)^{n}\iint {\frac {(yf(z))^{n}}{n!}}g(z)(1-yf'(z))\mathrm {e} ^{\mathrm {i} k(x-z)},円{\frac {dk}{2\pi }},円dz\end{aligned}}}
The integral over {\displaystyle k} then gives {\displaystyle \delta (x-z)} and we have:
- {\displaystyle {\begin{aligned}g(v)&=\sum _{n=0}^{\infty }\left({\frac {\partial }{\partial x}}\right)^{n}\left[{\frac {(yf(x))^{n}}{n!}}g(x)(1-yf'(x))\right]\\[10pt]&=\sum _{n=0}^{\infty }\left({\frac {\partial }{\partial x}}\right)^{n}\left[{\frac {y^{n}f(x)^{n}g(x)}{n!}}-{\frac {y^{n+1}}{(n+1)!}}\left\{(g(x)f(x)^{n+1})'-g'(x)f(x)^{n+1}\right\}\right]\end{aligned}}}
Rearranging the sum and cancelling then gives the result:
- {\displaystyle g(v)=g(x)+\sum _{k=1}^{\infty }{\frac {y^{k}}{k!}}\left({\frac {\partial }{\partial x}}\right)^{k-1}\left(f(x)^{k}g'(x)\right)}
References
[edit ]- ^ Lagrange, Joseph Louis (1770) "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries," Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, vol. 24, pages 251–326. (Available on-line at: [1] .)
- ^ Lagrange, Joseph Louis, Oeuvres, [Paris, 1869], Vol. 2, page 25; Vol. 3, pages 3–73.
- ^ Laplace, Pierre Simon de (1777) "Mémoire sur l'usage du calcul aux différences partielles dans la théories des suites," Mémoires de l'Académie Royale des Sciences de Paris, vol. , pages 99–122.
- ^ Laplace, Pierre Simon de, Oeuvres [Paris, 1843], Vol. 9, pages 313–335.
- ^ Laplace's proof is presented in:
- Goursat, Édouard, A Course in Mathematical Analysis (translated by E.R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. I, pages 404–405.
- ^ Hermite, Charles (1865) "Sur quelques développements en série de fonctions de plusieurs variables," Comptes Rendus de l'Académie des Sciences des Paris, vol. 60, pages 1–26.
- ^ Hermite, Charles, Oeuvres [Paris, 1908], Vol. 2, pages 319–346.
- ^ Hermite's proof is presented in:
- Goursat, Édouard, A Course in Mathematical Analysis (translated by E. R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. II, Part 1, pages 106–107.
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis , 4th ed. [Cambridge, England: Cambridge University Press, 1962] pages 132–133.
External links
[edit ]- Lagrange Inversion [Reversion] Theorem on MathWorld
- Cornish–Fisher expansion, an application of the theorem
- Article on equation of time contains an application to Kepler's equation.