Jump to content
Wikipedia The Free Encyclopedia

Kummer's transformation of series

From Wikipedia, the free encyclopedia
Mathematical method

In mathematics, specifically in the field of numerical analysis, Kummer's transformation of series is a method used to accelerate the convergence of an infinite series. The method was first suggested by Ernst Kummer in 1837.

Technique

[edit ]

Let

A = n = 1 a n {\displaystyle A=\sum _{n=1}^{\infty }a_{n}} {\displaystyle A=\sum _{n=1}^{\infty }a_{n}}

be an infinite sum whose value we wish to compute, and let

B = n = 1 b n {\displaystyle B=\sum _{n=1}^{\infty }b_{n}} {\displaystyle B=\sum _{n=1}^{\infty }b_{n}}

be an infinite sum with comparable terms whose value is known. If the limit

γ := lim n a n b n {\displaystyle \gamma :=\lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}} {\displaystyle \gamma :=\lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}}

exists, then a n γ b n {\displaystyle a_{n}-\gamma ,円b_{n}} {\displaystyle a_{n}-\gamma ,円b_{n}} is always also a sequence going to zero and the series given by the difference, n = 1 ( a n γ b n ) {\displaystyle \sum _{n=1}^{\infty }(a_{n}-\gamma ,円b_{n})} {\displaystyle \sum _{n=1}^{\infty }(a_{n}-\gamma ,円b_{n})}, converges. If γ 0 {\displaystyle \gamma \neq 0} {\displaystyle \gamma \neq 0}, this new series differs from the original n = 1 a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} {\displaystyle \sum _{n=1}^{\infty }a_{n}} and, under broad conditions, converges more rapidly.[1] We may then compute A {\displaystyle A} {\displaystyle A} as

A = γ B + n = 1 ( a n γ b n ) {\displaystyle A=\gamma ,円B+\sum _{n=1}^{\infty }(a_{n}-\gamma ,円b_{n})} {\displaystyle A=\gamma ,円B+\sum _{n=1}^{\infty }(a_{n}-\gamma ,円b_{n})},

where γ B {\displaystyle \gamma B} {\displaystyle \gamma B} is a constant. Where a n 0 {\displaystyle a_{n}\neq 0} {\displaystyle a_{n}\neq 0}, the terms can be written as the product ( 1 γ b n / a n ) a n {\displaystyle (1-\gamma ,円b_{n}/a_{n}),円a_{n}} {\displaystyle (1-\gamma ,円b_{n}/a_{n}),円a_{n}}. If a n 0 {\displaystyle a_{n}\neq 0} {\displaystyle a_{n}\neq 0} for all n {\displaystyle n} {\displaystyle n}, the sum is over a component-wise product of two sequences going to zero,

A = γ B + n = 1 ( 1 γ b n / a n ) a n {\displaystyle A=\gamma ,円B+\sum _{n=1}^{\infty }(1-\gamma ,円b_{n}/a_{n}),円a_{n}} {\displaystyle A=\gamma ,円B+\sum _{n=1}^{\infty }(1-\gamma ,円b_{n}/a_{n}),円a_{n}}.

Example

[edit ]

Consider the Leibniz formula for π:

1 1 3 + 1 5 1 7 + 1 9 = π 4 . {\displaystyle 1,円-,円{\frac {1}{3}},円+,円{\frac {1}{5}},円-,円{\frac {1}{7}},円+,円{\frac {1}{9}},円-,円\cdots ,円=,円{\frac {\pi }{4}}.} {\displaystyle 1,円-,円{\frac {1}{3}},円+,円{\frac {1}{5}},円-,円{\frac {1}{7}},円+,円{\frac {1}{9}},円-,円\cdots ,円=,円{\frac {\pi }{4}}.}

We group terms in pairs as

1 ( 1 3 1 5 ) ( 1 7 1 9 ) + {\displaystyle 1-\left({\frac {1}{3}}-{\frac {1}{5}}\right)-\left({\frac {1}{7}}-{\frac {1}{9}}\right)+\cdots } {\displaystyle 1-\left({\frac {1}{3}}-{\frac {1}{5}}\right)-\left({\frac {1}{7}}-{\frac {1}{9}}\right)+\cdots }
= 1 2 ( 1 15 + 1 63 + ) = 1 2 A {\displaystyle ,円=1-2\left({\frac {1}{15}}+{\frac {1}{63}}+\cdots \right)=1-2A} {\displaystyle ,円=1-2\left({\frac {1}{15}}+{\frac {1}{63}}+\cdots \right)=1-2A}

where we identify

A = n = 1 1 16 n 2 1 {\displaystyle A=\sum _{n=1}^{\infty }{\frac {1}{16n^{2}-1}}} {\displaystyle A=\sum _{n=1}^{\infty }{\frac {1}{16n^{2}-1}}}.

We apply Kummer's method to accelerate A {\displaystyle A} {\displaystyle A}, which will give an accelerated sum for computing π = 4 8 A {\displaystyle \pi =4-8A} {\displaystyle \pi =4-8A}.

Let

B = n = 1 1 4 n 2 1 = 1 3 + 1 15 + {\displaystyle B=\sum _{n=1}^{\infty }{\frac {1}{4n^{2}-1}}={\frac {1}{3}}+{\frac {1}{15}}+\cdots } {\displaystyle B=\sum _{n=1}^{\infty }{\frac {1}{4n^{2}-1}}={\frac {1}{3}}+{\frac {1}{15}}+\cdots }
= 1 2 1 6 + 1 6 1 10 + {\displaystyle ,円={\frac {1}{2}}-{\frac {1}{6}}+{\frac {1}{6}}-{\frac {1}{10}}+\cdots } {\displaystyle ,円={\frac {1}{2}}-{\frac {1}{6}}+{\frac {1}{6}}-{\frac {1}{10}}+\cdots }

This is a telescoping series with sum value 12. In this case

γ := lim n 1 16 n 2 1 1 4 n 2 1 = lim n 4 n 2 1 16 n 2 1 = 1 4 {\displaystyle \gamma :=\lim _{n\to \infty }{\frac {\frac {1}{16n^{2}-1}}{\frac {1}{4n^{2}-1}}}=\lim _{n\to \infty }{\frac {4n^{2}-1}{16n^{2}-1}}={\frac {1}{4}}} {\displaystyle \gamma :=\lim _{n\to \infty }{\frac {\frac {1}{16n^{2}-1}}{\frac {1}{4n^{2}-1}}}=\lim _{n\to \infty }{\frac {4n^{2}-1}{16n^{2}-1}}={\frac {1}{4}}}

and so Kummer's transformation formula above gives

A = 1 4 1 2 + n = 1 ( 1 1 4 1 4 n 2 1 1 16 n 2 1 ) 1 16 n 2 1 {\displaystyle A={\frac {1}{4}}\cdot {\frac {1}{2}}+\sum _{n=1}^{\infty }\left(1-{\frac {1}{4}}{\frac {\frac {1}{4n^{2}-1}}{\frac {1}{16n^{2}-1}}}\right){\frac {1}{16n^{2}-1}}} {\displaystyle A={\frac {1}{4}}\cdot {\frac {1}{2}}+\sum _{n=1}^{\infty }\left(1-{\frac {1}{4}}{\frac {\frac {1}{4n^{2}-1}}{\frac {1}{16n^{2}-1}}}\right){\frac {1}{16n^{2}-1}}}
= 1 8 3 4 n = 1 1 16 n 2 1 1 4 n 2 1 {\displaystyle ={\frac {1}{8}}-{\frac {3}{4}}\sum _{n=1}^{\infty }{\frac {1}{16n^{2}-1}}{\frac {1}{4n^{2}-1}}} {\displaystyle ={\frac {1}{8}}-{\frac {3}{4}}\sum _{n=1}^{\infty }{\frac {1}{16n^{2}-1}}{\frac {1}{4n^{2}-1}}}

which converges much faster than the original series.

Coming back to Leibniz formula, we obtain a representation of π {\displaystyle \pi } {\displaystyle \pi } that separates 3 {\displaystyle 3} {\displaystyle 3} and involves a fastly converging sum over just the squared even numbers ( 2 n ) 2 {\displaystyle (2n)^{2}} {\displaystyle (2n)^{2}},

π = 4 8 A {\displaystyle \pi =4-8A} {\displaystyle \pi =4-8A}
= 3 + 6 n = 1 1 ( 4 ( 2 n ) 2 1 ) ( ( 2 n ) 2 1 ) {\displaystyle =3+6\cdot \sum _{n=1}^{\infty }{\frac {1}{(4(2n)^{2}-1)((2n)^{2}-1)}}} {\displaystyle =3+6\cdot \sum _{n=1}^{\infty }{\frac {1}{(4(2n)^{2}-1)((2n)^{2}-1)}}}
= 3 + 2 15 + 2 315 + 6 5005 + {\displaystyle =3+{\frac {2}{15}}+{\frac {2}{315}}+{\frac {6}{5005}}+\cdots } {\displaystyle =3+{\frac {2}{15}}+{\frac {2}{315}}+{\frac {6}{5005}}+\cdots }

See also

[edit ]

References

[edit ]
  1. ^ Holy et al., On Faster Convergent Infinite Series, Mathematica Slovaca, January 2008
[edit ]


Stub icon

This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /