Kato's inequality
In functional analysis, a subfield of mathematics, Kato's inequality is a distributional inequality for the Laplace operator or certain elliptic operators. It was proven in 1972 by the Japanese mathematician Tosio Kato.[1]
The original inequality is for some degenerate elliptic operators.[2] This article treats the special (but important) case for the Laplace operator.[3]
Inequality for the Laplace operator
[edit ]Let {\displaystyle \Omega \subset \mathbb {R} ^{d}} be a bounded and open set, and {\displaystyle f\in L_{\operatorname {loc} }^{1}(\Omega )} such that {\displaystyle \Delta f\in L_{\operatorname {loc} }^{1}(\Omega )}. Then the following holds[4] [3]
- {\displaystyle \Delta |f|\geq \operatorname {Re} \left((\operatorname {sgn} {\overline {f}})\Delta f\right)\quad } in {\displaystyle \;{\mathcal {D}}'(\Omega )},
where
- {\displaystyle \operatorname {sgn} {\overline {f}}={\begin{cases}{\frac {\overline {f(x)}}{|f(x)|}}&{\text{if }}f\neq 0\0円&{\text{if }}f=0.\end{cases}}}[5]
{\displaystyle L_{\operatorname {loc} }^{1}} is the space of locally integrable functions – i.e., functions that are integrable on every compact subset of their domains of definition.
Remarks
[edit ]- Sometimes the inequality is stated in the form
- {\displaystyle \Delta f^{+}\geq \operatorname {Re} \left(1_{[f\geq 0]}\Delta f\right)\quad } in {\displaystyle \;{\mathcal {D}}'(\Omega )}
- where {\displaystyle f^{+}=\operatorname {max} (f,0)} and {\displaystyle 1_{[f\geq 0]}} is the indicator function.
- If {\displaystyle f} is continuous in {\displaystyle \Omega } then
- {\displaystyle \Delta |f|\geq \operatorname {Re} \left((\operatorname {sgn} {\overline {f}})\Delta f\right)\quad } in {\displaystyle \;{\mathcal {D}}'(\{f\neq 0\})}.[6]
Literature
[edit ]- Brezis, Haı̈m; Ponce, Augusto (2004). "Kato's inequality when Δu is a measure". Comptes Rendus Mathematique. 338 (8): 599–604. doi:10.1016/j.crma.2003年12月03日2.
- Arendt, Wolfgang; ter Elst, Antonious F.M. (2019). "Kato's Inequality". Analysis and Operator Theory. Springer Optimization and Its Applications. Springer Optimization and Its Applications. Vol. 146. Cham: Springer. pp. 47–60. doi:10.1007/978-3-030-12661-2_3. ISBN 978-3-030-12660-5. S2CID 191796248.
References
[edit ]- ^ Kato, Tosio (1972). "Schrödinger operators with singular potentials". Israel Journal of Mathematics . 13 (1–2): 135–148. doi:10.1007/BF02760233. S2CID 115546931.
- ^ Devinatz, Allen (1979). "On an Inequality of Tosio Kato for Degenerate-Elliptic Operators". Journal of Functional Analysis. 32 (3): 312–335. doi:10.1016/0022-1236(79)90043-0 .
- ^ a b Brezis, Haı̈m; Ponce, Augusto (2004). "Kato's inequality when Δu is a measure". Comptes Rendus Mathematique. 338 (8): 599–604. doi:10.1016/j.crma.2003年12月03日2.
- ^ Arendt, Wolfgang; ter Elst, Antonious F.M. (2019). "Kato's Inequality". Analysis and Operator Theory. Springer Optimization and Its Applications. Springer Optimization and Its Applications. Vol. 146. Cham: Springer. pp. 47–60. doi:10.1007/978-3-030-12661-2_3. ISBN 978-3-030-12660-5. S2CID 191796248.
- ^ Horiuchi, Toshio (2001). "Some remarks on Kato's inequality". Journal of Inequalities and Applications. 2001: 615789. doi:10.1155/S1025583401000030 .
- ^ Dávila, Juan; Ponce, Augusto (2003). "Variants of Kato's inequality and removable singularities". Journal d'Analyse Mathématique . 91: 143–178. doi:10.1007/BF02788785. S2CID 55929478.