Jump to content
Wikipedia The Free Encyclopedia

Kato's inequality

From Wikipedia, the free encyclopedia
Inequality relating to the Laplace operator

In functional analysis, a subfield of mathematics, Kato's inequality is a distributional inequality for the Laplace operator or certain elliptic operators. It was proven in 1972 by the Japanese mathematician Tosio Kato.[1]

The original inequality is for some degenerate elliptic operators.[2] This article treats the special (but important) case for the Laplace operator.[3]

Inequality for the Laplace operator

[edit ]

Let Ω R d {\displaystyle \Omega \subset \mathbb {R} ^{d}} {\displaystyle \Omega \subset \mathbb {R} ^{d}} be a bounded and open set, and f L loc 1 ( Ω ) {\displaystyle f\in L_{\operatorname {loc} }^{1}(\Omega )} {\displaystyle f\in L_{\operatorname {loc} }^{1}(\Omega )} such that Δ f L loc 1 ( Ω ) {\displaystyle \Delta f\in L_{\operatorname {loc} }^{1}(\Omega )} {\displaystyle \Delta f\in L_{\operatorname {loc} }^{1}(\Omega )}. Then the following holds[4] [3]

Δ | f | Re ( ( sgn f ¯ ) Δ f ) {\displaystyle \Delta |f|\geq \operatorname {Re} \left((\operatorname {sgn} {\overline {f}})\Delta f\right)\quad } {\displaystyle \Delta |f|\geq \operatorname {Re} \left((\operatorname {sgn} {\overline {f}})\Delta f\right)\quad } in D ( Ω ) {\displaystyle \;{\mathcal {D}}'(\Omega )} {\displaystyle \;{\mathcal {D}}'(\Omega )},

where

sgn f ¯ = { f ( x ) ¯ | f ( x ) | if  f 0 0 if  f = 0. {\displaystyle \operatorname {sgn} {\overline {f}}={\begin{cases}{\frac {\overline {f(x)}}{|f(x)|}}&{\text{if }}f\neq 0\0円&{\text{if }}f=0.\end{cases}}} {\displaystyle \operatorname {sgn} {\overline {f}}={\begin{cases}{\frac {\overline {f(x)}}{|f(x)|}}&{\text{if }}f\neq 0\0円&{\text{if }}f=0.\end{cases}}}[5]

L loc 1 {\displaystyle L_{\operatorname {loc} }^{1}} {\displaystyle L_{\operatorname {loc} }^{1}} is the space of locally integrable functions – i.e., functions that are integrable on every compact subset of their domains of definition.

Remarks

[edit ]
  • Sometimes the inequality is stated in the form
Δ f + Re ( 1 [ f 0 ] Δ f ) {\displaystyle \Delta f^{+}\geq \operatorname {Re} \left(1_{[f\geq 0]}\Delta f\right)\quad } {\displaystyle \Delta f^{+}\geq \operatorname {Re} \left(1_{[f\geq 0]}\Delta f\right)\quad } in D ( Ω ) {\displaystyle \;{\mathcal {D}}'(\Omega )} {\displaystyle \;{\mathcal {D}}'(\Omega )}
where f + = max ( f , 0 ) {\displaystyle f^{+}=\operatorname {max} (f,0)} {\displaystyle f^{+}=\operatorname {max} (f,0)} and 1 [ f 0 ] {\displaystyle 1_{[f\geq 0]}} {\displaystyle 1_{[f\geq 0]}} is the indicator function.
  • If f {\displaystyle f} {\displaystyle f} is continuous in Ω {\displaystyle \Omega } {\displaystyle \Omega } then
Δ | f | Re ( ( sgn f ¯ ) Δ f ) {\displaystyle \Delta |f|\geq \operatorname {Re} \left((\operatorname {sgn} {\overline {f}})\Delta f\right)\quad } {\displaystyle \Delta |f|\geq \operatorname {Re} \left((\operatorname {sgn} {\overline {f}})\Delta f\right)\quad } in D ( { f 0 } ) {\displaystyle \;{\mathcal {D}}'(\{f\neq 0\})} {\displaystyle \;{\mathcal {D}}'(\{f\neq 0\})}.[6]

Literature

[edit ]

References

[edit ]
  1. ^ Kato, Tosio (1972). "Schrödinger operators with singular potentials". Israel Journal of Mathematics . 13 (1–2): 135–148. doi:10.1007/BF02760233. S2CID 115546931.
  2. ^ Devinatz, Allen (1979). "On an Inequality of Tosio Kato for Degenerate-Elliptic Operators". Journal of Functional Analysis. 32 (3): 312–335. doi:10.1016/0022-1236(79)90043-0 .
  3. ^ a b Brezis, Haı̈m; Ponce, Augusto (2004). "Kato's inequality when Δu is a measure". Comptes Rendus Mathematique. 338 (8): 599–604. doi:10.1016/j.crma.2003年12月03日2.
  4. ^ Arendt, Wolfgang; ter Elst, Antonious F.M. (2019). "Kato's Inequality". Analysis and Operator Theory. Springer Optimization and Its Applications. Springer Optimization and Its Applications. Vol. 146. Cham: Springer. pp. 47–60. doi:10.1007/978-3-030-12661-2_3. ISBN 978-3-030-12660-5. S2CID 191796248.
  5. ^ Horiuchi, Toshio (2001). "Some remarks on Kato's inequality". Journal of Inequalities and Applications. 2001: 615789. doi:10.1155/S1025583401000030 .
  6. ^ Dávila, Juan; Ponce, Augusto (2003). "Variants of Kato's inequality and removable singularities". Journal d'Analyse Mathématique . 91: 143–178. doi:10.1007/BF02788785. S2CID 55929478.

AltStyle によって変換されたページ (->オリジナル) /