Jump to content
Wikipedia The Free Encyclopedia

K-convex function

From Wikipedia, the free encyclopedia
Mathematical function

K-convex functions, first introduced by Scarf,[1] are a special weakening of the concept of convex function which is crucial in the proof of the optimality of the ( s , S ) {\displaystyle (s,S)} {\displaystyle (s,S)} policy in inventory control theory. The policy is characterized by two numbers s and S, S s {\displaystyle S\geq s} {\displaystyle S\geq s}, such that when the inventory level falls below level s, an order is issued for a quantity that brings the inventory up to level S, and nothing is ordered otherwise. Gallego and Sethi [2] have generalized the concept of K-convexity to higher dimensional Euclidean spaces.

Definition

[edit ]

Two equivalent definitions are as follows:

Definition 1 (The original definition)

[edit ]

Let K be a non-negative real number. A function g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex if

g ( u ) + z [ g ( u ) g ( u b ) b ] g ( u + z ) + K {\displaystyle g(u)+z\left[{\frac {g(u)-g(u-b)}{b}}\right]\leq g(u+z)+K} {\displaystyle g(u)+z\left[{\frac {g(u)-g(u-b)}{b}}\right]\leq g(u+z)+K}

for any u , z 0 , {\displaystyle u,z\geq 0,} {\displaystyle u,z\geq 0,} and b > 0 {\displaystyle b>0} {\displaystyle b>0}.

Definition 2 (Definition with geometric interpretation)

[edit ]

A function g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex if

g ( λ x + λ ¯ y ) λ g ( x ) + λ ¯ [ g ( y ) + K ] {\displaystyle g(\lambda x+{\bar {\lambda }}y)\leq \lambda g(x)+{\bar {\lambda }}[g(y)+K]} {\displaystyle g(\lambda x+{\bar {\lambda }}y)\leq \lambda g(x)+{\bar {\lambda }}[g(y)+K]}

for all x y , λ [ 0 , 1 ] {\displaystyle x\leq y,\lambda \in [0,1]} {\displaystyle x\leq y,\lambda \in [0,1]}, where λ ¯ = 1 λ {\displaystyle {\bar {\lambda }}=1-\lambda } {\displaystyle {\bar {\lambda }}=1-\lambda }.

This definition admits a simple geometric interpretation related to the concept of visibility.[3] Let a 0 {\displaystyle a\geq 0} {\displaystyle a\geq 0}. A point ( x , f ( x ) ) {\displaystyle (x,f(x))} {\displaystyle (x,f(x))} is said to be visible from ( y , f ( y ) + a ) {\displaystyle (y,f(y)+a)} {\displaystyle (y,f(y)+a)} if all intermediate points ( λ x + λ ¯ y , f ( λ x + λ ¯ y ) ) , 0 λ 1 {\displaystyle (\lambda x+{\bar {\lambda }}y,f(\lambda x+{\bar {\lambda }}y)),0\leq \lambda \leq 1} {\displaystyle (\lambda x+{\bar {\lambda }}y,f(\lambda x+{\bar {\lambda }}y)),0\leq \lambda \leq 1} lie below the line segment joining these two points. Then the geometric characterization of K-convexity can be obtain as:

A function g {\displaystyle g} {\displaystyle g} is K-convex if and only if ( x , g ( x ) ) {\displaystyle (x,g(x))} {\displaystyle (x,g(x))} is visible from ( y , g ( y ) + K ) {\displaystyle (y,g(y)+K)} {\displaystyle (y,g(y)+K)} for all y x {\displaystyle y\geq x} {\displaystyle y\geq x}.

Proof of Equivalence

[edit ]

It is sufficient to prove that the above definitions can be transformed to each other. This can be seen by using the transformation

λ = z / ( b + z ) , x = u b , y = u + z . {\displaystyle \lambda =z/(b+z),\quad x=u-b,\quad y=u+z.} {\displaystyle \lambda =z/(b+z),\quad x=u-b,\quad y=u+z.}

Properties

[edit ]

[4]

Property 1

[edit ]

If g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex, then it is L-convex for any L K {\displaystyle L\geq K} {\displaystyle L\geq K}. In particular, if g {\displaystyle g} {\displaystyle g} is convex, then it is also K-convex for any K 0 {\displaystyle K\geq 0} {\displaystyle K\geq 0}.

Property 2

[edit ]

If g 1 {\displaystyle g_{1}} {\displaystyle g_{1}} is K-convex and g 2 {\displaystyle g_{2}} {\displaystyle g_{2}} is L-convex, then for α 0 , β 0 , g = α g 1 + β g 2 {\displaystyle \alpha \geq 0,\beta \geq 0,\;g=\alpha g_{1}+\beta g_{2}} {\displaystyle \alpha \geq 0,\beta \geq 0,\;g=\alpha g_{1}+\beta g_{2}} is ( α K + β L ) {\displaystyle (\alpha K+\beta L)} {\displaystyle (\alpha K+\beta L)}-convex.

Property 3

[edit ]

If g {\displaystyle g} {\displaystyle g} is K-convex and ξ {\displaystyle \xi } {\displaystyle \xi } is a random variable such that E | g ( x ξ ) | < {\displaystyle E|g(x-\xi )|<\infty } {\displaystyle E|g(x-\xi )|<\infty } for all x {\displaystyle x} {\displaystyle x}, then E g ( x ξ ) {\displaystyle Eg(x-\xi )} {\displaystyle Eg(x-\xi )} is also K-convex.

Property 4

[edit ]

If g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex, restriction of g {\displaystyle g} {\displaystyle g} on any convex set D R {\displaystyle \mathbb {D} \subset \mathbb {R} } {\displaystyle \mathbb {D} \subset \mathbb {R} } is K-convex.

Property 5

[edit ]

If g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is a continuous K-convex function and g ( y ) {\displaystyle g(y)\rightarrow \infty } {\displaystyle g(y)\rightarrow \infty } as | y | {\displaystyle |y|\rightarrow \infty } {\displaystyle |y|\rightarrow \infty }, then there exit scalars s {\displaystyle s} {\displaystyle s} and S {\displaystyle S} {\displaystyle S} with s S {\displaystyle s\leq S} {\displaystyle s\leq S} such that

  • g ( S ) g ( y ) {\displaystyle g(S)\leq g(y)} {\displaystyle g(S)\leq g(y)}, for all y R {\displaystyle y\in \mathbb {R} } {\displaystyle y\in \mathbb {R} };
  • g ( S ) + K = g ( s ) < g ( y ) {\displaystyle g(S)+K=g(s)<g(y)} {\displaystyle g(S)+K=g(s)<g(y)}, for all y < s {\displaystyle y<s} {\displaystyle y<s};
  • g ( y ) {\displaystyle g(y)} {\displaystyle g(y)} is a decreasing function on ( , s ) {\displaystyle (-\infty ,s)} {\displaystyle (-\infty ,s)};
  • g ( y ) g ( z ) + K {\displaystyle g(y)\leq g(z)+K} {\displaystyle g(y)\leq g(z)+K} for all y , z {\displaystyle y,z} {\displaystyle y,z} with s y z {\displaystyle s\leq y\leq z} {\displaystyle s\leq y\leq z}.

References

[edit ]
  1. ^ Scarf, H. (1960). The Optimality of (S, s) Policies in the Dynamic Inventory Problem. Stanford, CA: Stanford University Press. p. Chapter 13.
  2. ^ Gallego, G. and Sethi, S. P. (2005). K-convexity in Rn. Journal of Optimization Theory & Applications, 127(1):71-88.
  3. ^ Kolmogorov, A. N.; Fomin, S. V. (1970). Introduction to Real Analysis. New York: Dover Publications Inc.
  4. ^ Sethi S P, Cheng F. Optimality of (s, S) Policies in Inventory Models with Markovian Demand. INFORMS, 1997.

Further reading

[edit ]
Basic concepts
Topics (list)
Maps
Main results (list)
Sets
Series
Duality
Applications and related

AltStyle によって変換されたページ (->オリジナル) /