Jump to content
Wikipedia The Free Encyclopedia

Iwasawa decomposition

From Wikipedia, the free encyclopedia
Mathematical process dealing with Lie groups

In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.[1]

Definition

[edit ]
  • G is a connected semisimple real Lie group.
  • g 0 {\displaystyle {\mathfrak {g}}_{0}} {\displaystyle {\mathfrak {g}}_{0}} is the Lie algebra of G
  • g {\displaystyle {\mathfrak {g}}} {\displaystyle {\mathfrak {g}}} is the complexification of g 0 {\displaystyle {\mathfrak {g}}_{0}} {\displaystyle {\mathfrak {g}}_{0}}.
  • θ is a Cartan involution of g 0 {\displaystyle {\mathfrak {g}}_{0}} {\displaystyle {\mathfrak {g}}_{0}}
  • g 0 = k 0 p 0 {\displaystyle {\mathfrak {g}}_{0}={\mathfrak {k}}_{0}\oplus {\mathfrak {p}}_{0}} {\displaystyle {\mathfrak {g}}_{0}={\mathfrak {k}}_{0}\oplus {\mathfrak {p}}_{0}} is the corresponding Cartan decomposition
  • a 0 {\displaystyle {\mathfrak {a}}_{0}} {\displaystyle {\mathfrak {a}}_{0}} is a maximal abelian subalgebra of p 0 {\displaystyle {\mathfrak {p}}_{0}} {\displaystyle {\mathfrak {p}}_{0}}
  • Σ is the set of restricted roots of a 0 {\displaystyle {\mathfrak {a}}_{0}} {\displaystyle {\mathfrak {a}}_{0}}, corresponding to eigenvalues of a 0 {\displaystyle {\mathfrak {a}}_{0}} {\displaystyle {\mathfrak {a}}_{0}} acting on g 0 {\displaystyle {\mathfrak {g}}_{0}} {\displaystyle {\mathfrak {g}}_{0}}.
  • Σ+ is a choice of positive roots of Σ
  • n 0 {\displaystyle {\mathfrak {n}}_{0}} {\displaystyle {\mathfrak {n}}_{0}} is a nilpotent Lie algebra given as the sum of the root spaces of Σ+
  • K, A, N, are the Lie subgroups of G generated by k 0 , a 0 {\displaystyle {\mathfrak {k}}_{0},{\mathfrak {a}}_{0}} {\displaystyle {\mathfrak {k}}_{0},{\mathfrak {a}}_{0}} and n 0 {\displaystyle {\mathfrak {n}}_{0}} {\displaystyle {\mathfrak {n}}_{0}}.

Then the Iwasawa decomposition of g 0 {\displaystyle {\mathfrak {g}}_{0}} {\displaystyle {\mathfrak {g}}_{0}} is

g 0 = k 0 a 0 n 0 {\displaystyle {\mathfrak {g}}_{0}={\mathfrak {k}}_{0}\oplus {\mathfrak {a}}_{0}\oplus {\mathfrak {n}}_{0}} {\displaystyle {\mathfrak {g}}_{0}={\mathfrak {k}}_{0}\oplus {\mathfrak {a}}_{0}\oplus {\mathfrak {n}}_{0}}

and the Iwasawa decomposition of G is

G = K A N {\displaystyle G=KAN} {\displaystyle G=KAN}

meaning there is an analytic diffeomorphism (but not a group homomorphism) from the manifold K × A × N {\displaystyle K\times A\times N} {\displaystyle K\times A\times N} to the Lie group G {\displaystyle G} {\displaystyle G}, sending ( k , a , n ) k a n {\displaystyle (k,a,n)\mapsto kan} {\displaystyle (k,a,n)\mapsto kan}.

The dimension of A (or equivalently of a 0 {\displaystyle {\mathfrak {a}}_{0}} {\displaystyle {\mathfrak {a}}_{0}}) is equal to the real rank of G.

Iwasawa decompositions also hold for some disconnected semisimple groups G, where K becomes a (disconnected) maximal compact subgroup provided the center of G is finite.

The restricted root space decomposition is

g 0 = m 0 a 0 λ Σ g λ {\displaystyle {\mathfrak {g}}_{0}={\mathfrak {m}}_{0}\oplus {\mathfrak {a}}_{0}\oplus _{\lambda \in \Sigma }{\mathfrak {g}}_{\lambda }} {\displaystyle {\mathfrak {g}}_{0}={\mathfrak {m}}_{0}\oplus {\mathfrak {a}}_{0}\oplus _{\lambda \in \Sigma }{\mathfrak {g}}_{\lambda }}

where m 0 {\displaystyle {\mathfrak {m}}_{0}} {\displaystyle {\mathfrak {m}}_{0}} is the centralizer of a 0 {\displaystyle {\mathfrak {a}}_{0}} {\displaystyle {\mathfrak {a}}_{0}} in k 0 {\displaystyle {\mathfrak {k}}_{0}} {\displaystyle {\mathfrak {k}}_{0}} and g λ = { X g 0 : [ H , X ] = λ ( H ) X H a 0 } {\displaystyle {\mathfrak {g}}_{\lambda }=\{X\in {\mathfrak {g}}_{0}:[H,X]=\lambda (H)X\;\;\forall H\in {\mathfrak {a}}_{0}\}} {\displaystyle {\mathfrak {g}}_{\lambda }=\{X\in {\mathfrak {g}}_{0}:[H,X]=\lambda (H)X\;\;\forall H\in {\mathfrak {a}}_{0}\}} is the root space. The number m λ = dim g λ {\displaystyle m_{\lambda }={\text{dim}},円{\mathfrak {g}}_{\lambda }} {\displaystyle m_{\lambda }={\text{dim}},円{\mathfrak {g}}_{\lambda }} is called the multiplicity of λ {\displaystyle \lambda } {\displaystyle \lambda }.

Examples

[edit ]

If G=SLn(R), then we can take K to be the orthogonal matrices, A to be the positive diagonal matrices with determinant 1, and N to be the unipotent group consisting of upper triangular matrices with 1s on the diagonal.

For the case of n = 2, the Iwasawa decomposition of G = SL(2, R) is in terms of

K = { ( cos θ sin θ sin θ cos θ ) S L ( 2 , R )   |   θ R } S O ( 2 ) , {\displaystyle \mathbf {K} =\left\{{\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ \theta \in \mathbf {R} \right\}\cong SO(2),} {\displaystyle \mathbf {K} =\left\{{\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ \theta \in \mathbf {R} \right\}\cong SO(2),}
A = { ( r 0 0 r 1 ) S L ( 2 , R )   |   r > 0 } , {\displaystyle \mathbf {A} =\left\{{\begin{pmatrix}r&0\0円&r^{-1}\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ r>0\right\},} {\displaystyle \mathbf {A} =\left\{{\begin{pmatrix}r&0\0円&r^{-1}\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ r>0\right\},}
N = { ( 1 x 0 1 ) S L ( 2 , R )   |   x R } . {\displaystyle \mathbf {N} =\left\{{\begin{pmatrix}1&x\0円&1\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ x\in \mathbf {R} \right\}.} {\displaystyle \mathbf {N} =\left\{{\begin{pmatrix}1&x\0円&1\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ x\in \mathbf {R} \right\}.}

For the symplectic group G = Sp(2n, R), a possible Iwasawa decomposition is in terms of

K = S p ( 2 n , R ) S O ( 2 n ) = { ( A B B A ) S p ( 2 n , R )   |   A + i B U ( n ) } U ( n ) , {\displaystyle \mathbf {K} =Sp(2n,\mathbb {R} )\cap SO(2n)=\left\{{\begin{pmatrix}A&B\\-B&A\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ A+iB\in U(n)\right\}\cong U(n),} {\displaystyle \mathbf {K} =Sp(2n,\mathbb {R} )\cap SO(2n)=\left\{{\begin{pmatrix}A&B\\-B&A\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ A+iB\in U(n)\right\}\cong U(n),}
A = { ( D 0 0 D 1 ) S p ( 2 n , R )   |   D  positive, diagonal } , {\displaystyle \mathbf {A} =\left\{{\begin{pmatrix}D&0\0円&D^{-1}\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ D{\text{ positive, diagonal}}\right\},} {\displaystyle \mathbf {A} =\left\{{\begin{pmatrix}D&0\0円&D^{-1}\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ D{\text{ positive, diagonal}}\right\},}
N = { ( N M 0 N T ) S p ( 2 n , R )   |   N  upper triangular with diagonal elements = 1 ,   N M T = M N T } . {\displaystyle \mathbf {N} =\left\{{\begin{pmatrix}N&M\0円&N^{-T}\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ N{\text{ upper triangular with diagonal elements = 1}},\ NM^{T}=MN^{T}\right\}.} {\displaystyle \mathbf {N} =\left\{{\begin{pmatrix}N&M\0円&N^{-T}\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ N{\text{ upper triangular with diagonal elements = 1}},\ NM^{T}=MN^{T}\right\}.}

Non-Archimedean Iwasawa decomposition

[edit ]

There is an analog to the above Iwasawa decomposition for a non-Archimedean field F {\displaystyle F} {\displaystyle F}: In this case, the group G L n ( F ) {\displaystyle GL_{n}(F)} {\displaystyle GL_{n}(F)} can be written as a product of the subgroup of upper-triangular matrices and the (maximal compact) subgroup G L n ( O F ) {\displaystyle GL_{n}(O_{F})} {\displaystyle GL_{n}(O_{F})}, where O F {\displaystyle O_{F}} {\displaystyle O_{F}} is the ring of integers of F {\displaystyle F} {\displaystyle F}.[2]

See also

[edit ]

References

[edit ]
  1. ^ Iwasawa, Kenkichi (1949). "On Some Types of Topological Groups". Annals of Mathematics . 50 (3): 507–558. doi:10.2307/1969548. JSTOR 1969548.
  2. ^ Bump, Daniel (1997), Automorphic forms and representations, Cambridge: Cambridge University Press, doi:10.1017/CBO9780511609572, ISBN 0-521-55098-X , Prop. 4.5.2

AltStyle によって変換されたページ (->オリジナル) /