Jump to content
Wikipedia The Free Encyclopedia

Interpretability logic

From Wikipedia, the free encyclopedia

Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.

Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.

Examples

[edit ]

Logic ILM

[edit ]

The language of ILM extends that of classical propositional logic by adding the unary modal operator {\displaystyle \Box } {\displaystyle \Box } and the binary modal operator {\displaystyle \triangleright } {\displaystyle \triangleright } (as always, p {\displaystyle \Diamond p} {\displaystyle \Diamond p} is defined as ¬ ¬ p {\displaystyle \neg \Box \neg p} {\displaystyle \neg \Box \neg p}). The arithmetical interpretation of p {\displaystyle \Box p} {\displaystyle \Box p} is " p {\displaystyle p} {\displaystyle p} is provable in Peano arithmetic (PA)", and p q {\displaystyle p\triangleright q} {\displaystyle p\triangleright q} is understood as " P A + q {\displaystyle PA+q} {\displaystyle PA+q} is interpretable in P A + p {\displaystyle PA+p} {\displaystyle PA+p}".

Axiom schemata:

  1. All classical tautologies
  2. ( p q ) ( p q ) {\displaystyle \Box (p\rightarrow q)\rightarrow (\Box p\rightarrow \Box q)} {\displaystyle \Box (p\rightarrow q)\rightarrow (\Box p\rightarrow \Box q)}
  3. ( p p ) p {\displaystyle \Box (\Box p\rightarrow p)\rightarrow \Box p} {\displaystyle \Box (\Box p\rightarrow p)\rightarrow \Box p}
  4. ( p q ) ( p q ) {\displaystyle \Box (p\rightarrow q)\rightarrow (p\triangleright q)} {\displaystyle \Box (p\rightarrow q)\rightarrow (p\triangleright q)}
  5. ( p q ) ( p q ) {\displaystyle (p\triangleright q)\rightarrow (\Diamond p\rightarrow \Diamond q)} {\displaystyle (p\triangleright q)\rightarrow (\Diamond p\rightarrow \Diamond q)}
  6. ( p q ) ( q r ) ( p r ) {\displaystyle (p\triangleright q)\wedge (q\triangleright r)\rightarrow (p\triangleright r)} {\displaystyle (p\triangleright q)\wedge (q\triangleright r)\rightarrow (p\triangleright r)}
  7. ( p r ) ( q r ) ( ( p q ) r ) {\displaystyle (p\triangleright r)\wedge (q\triangleright r)\rightarrow ((p\vee q)\triangleright r)} {\displaystyle (p\triangleright r)\wedge (q\triangleright r)\rightarrow ((p\vee q)\triangleright r)}
  8. p p {\displaystyle \Diamond p\triangleright p} {\displaystyle \Diamond p\triangleright p}
  9. ( p q ) ( ( p r ) ( q r ) ) {\displaystyle (p\triangleright q)\rightarrow ((p\wedge \Box r)\triangleright (q\wedge \Box r))} {\displaystyle (p\triangleright q)\rightarrow ((p\wedge \Box r)\triangleright (q\wedge \Box r))}

Rules of inference:

  1. "From p {\displaystyle p} {\displaystyle p} and p q {\displaystyle p\rightarrow q} {\displaystyle p\rightarrow q} conclude q {\displaystyle q} {\displaystyle q}"
  2. "From p {\displaystyle p} {\displaystyle p} conclude p {\displaystyle \Box p} {\displaystyle \Box p}".

The completeness of ILM with respect to its arithmetical interpretation was independently proven by Alessandro Berarducci and Vladimir Shavrukov.

Logic TOL

[edit ]

The language of TOL extends that of classical propositional logic by adding the modal operator {\displaystyle \Diamond } {\displaystyle \Diamond } which is allowed to take any nonempty sequence of arguments. The arithmetical interpretation of ( p 1 , , p n ) {\displaystyle \Diamond (p_{1},\ldots ,p_{n})} {\displaystyle \Diamond (p_{1},\ldots ,p_{n})} is " ( P A + p 1 , , P A + p n ) {\displaystyle (PA+p_{1},\ldots ,PA+p_{n})} {\displaystyle (PA+p_{1},\ldots ,PA+p_{n})} is a tolerant sequence of theories".

Axioms (with p , q {\displaystyle p,q} {\displaystyle p,q} standing for any formulas, r , s {\displaystyle {\vec {r}},{\vec {s}}} {\displaystyle {\vec {r}},{\vec {s}}} for any sequences of formulas, and ( ) {\displaystyle \Diamond ()} {\displaystyle \Diamond ()} identified with ⊤):

  1. All classical tautologies
  2. ( r , p , s ) ( r , p ¬ q , s ) ( r , q , s ) {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p\wedge \neg q,{\vec {s}})\vee \Diamond ({\vec {r}},q,{\vec {s}})} {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p\wedge \neg q,{\vec {s}})\vee \Diamond ({\vec {r}},q,{\vec {s}})}
  3. ( p ) ( p ¬ ( p ) ) {\displaystyle \Diamond (p)\rightarrow \Diamond (p\wedge \neg \Diamond (p))} {\displaystyle \Diamond (p)\rightarrow \Diamond (p\wedge \neg \Diamond (p))}
  4. ( r , p , s ) ( r , s ) {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},{\vec {s}})} {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},{\vec {s}})}
  5. ( r , p , s ) ( r , p , p , s ) {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p,p,{\vec {s}})} {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p,p,{\vec {s}})}
  6. ( p , ( r ) ) ( p ( r ) ) {\displaystyle \Diamond (p,\Diamond ({\vec {r}}))\rightarrow \Diamond (p\wedge \Diamond ({\vec {r}}))} {\displaystyle \Diamond (p,\Diamond ({\vec {r}}))\rightarrow \Diamond (p\wedge \Diamond ({\vec {r}}))}
  7. ( r , ( s ) ) ( r , s ) {\displaystyle \Diamond ({\vec {r}},\Diamond ({\vec {s}}))\rightarrow \Diamond ({\vec {r}},{\vec {s}})} {\displaystyle \Diamond ({\vec {r}},\Diamond ({\vec {s}}))\rightarrow \Diamond ({\vec {r}},{\vec {s}})}

Rules of inference:

  1. "From p {\displaystyle p} {\displaystyle p} and p q {\displaystyle p\rightarrow q} {\displaystyle p\rightarrow q} conclude q {\displaystyle q} {\displaystyle q}"
  2. "From ¬ p {\displaystyle \neg p} {\displaystyle \neg p} conclude ¬ ( p ) {\displaystyle \neg \Diamond (p)} {\displaystyle \neg \Diamond (p)}".

The completeness of TOL with respect to its arithmetical interpretation was proven by Giorgi Japaridze.

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /