Interpretability logic
Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.
Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.
Examples
[edit ]Logic ILM
[edit ]The language of ILM extends that of classical propositional logic by adding the unary modal operator {\displaystyle \Box } and the binary modal operator {\displaystyle \triangleright } (as always, {\displaystyle \Diamond p} is defined as {\displaystyle \neg \Box \neg p}). The arithmetical interpretation of {\displaystyle \Box p} is "{\displaystyle p} is provable in Peano arithmetic (PA)", and {\displaystyle p\triangleright q} is understood as "{\displaystyle PA+q} is interpretable in {\displaystyle PA+p}".
Axiom schemata:
- All classical tautologies
- {\displaystyle \Box (p\rightarrow q)\rightarrow (\Box p\rightarrow \Box q)}
- {\displaystyle \Box (\Box p\rightarrow p)\rightarrow \Box p}
- {\displaystyle \Box (p\rightarrow q)\rightarrow (p\triangleright q)}
- {\displaystyle (p\triangleright q)\rightarrow (\Diamond p\rightarrow \Diamond q)}
- {\displaystyle (p\triangleright q)\wedge (q\triangleright r)\rightarrow (p\triangleright r)}
- {\displaystyle (p\triangleright r)\wedge (q\triangleright r)\rightarrow ((p\vee q)\triangleright r)}
- {\displaystyle \Diamond p\triangleright p}
- {\displaystyle (p\triangleright q)\rightarrow ((p\wedge \Box r)\triangleright (q\wedge \Box r))}
Rules of inference:
- "From {\displaystyle p} and {\displaystyle p\rightarrow q} conclude {\displaystyle q}"
- "From {\displaystyle p} conclude {\displaystyle \Box p}".
The completeness of ILM with respect to its arithmetical interpretation was independently proven by Alessandro Berarducci and Vladimir Shavrukov.
Logic TOL
[edit ]The language of TOL extends that of classical propositional logic by adding the modal operator {\displaystyle \Diamond } which is allowed to take any nonempty sequence of arguments. The arithmetical interpretation of {\displaystyle \Diamond (p_{1},\ldots ,p_{n})} is "{\displaystyle (PA+p_{1},\ldots ,PA+p_{n})} is a tolerant sequence of theories".
Axioms (with {\displaystyle p,q} standing for any formulas, {\displaystyle {\vec {r}},{\vec {s}}} for any sequences of formulas, and {\displaystyle \Diamond ()} identified with ⊤):
- All classical tautologies
- {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p\wedge \neg q,{\vec {s}})\vee \Diamond ({\vec {r}},q,{\vec {s}})}
- {\displaystyle \Diamond (p)\rightarrow \Diamond (p\wedge \neg \Diamond (p))}
- {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},{\vec {s}})}
- {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p,p,{\vec {s}})}
- {\displaystyle \Diamond (p,\Diamond ({\vec {r}}))\rightarrow \Diamond (p\wedge \Diamond ({\vec {r}}))}
- {\displaystyle \Diamond ({\vec {r}},\Diamond ({\vec {s}}))\rightarrow \Diamond ({\vec {r}},{\vec {s}})}
Rules of inference:
- "From {\displaystyle p} and {\displaystyle p\rightarrow q} conclude {\displaystyle q}"
- "From {\displaystyle \neg p} conclude {\displaystyle \neg \Diamond (p)}".
The completeness of TOL with respect to its arithmetical interpretation was proven by Giorgi Japaridze.
References
[edit ]- Giorgi Japaridze and Dick de Jongh, The Logic of Provability. In Handbook of Proof Theory, S. Buss, ed., Elsevier, 1998, pp. 475-546.