Jump to content
Wikipedia The Free Encyclopedia

Friction modifier

From Wikipedia, the free encyclopedia
Lubricant additive to reduce friction and wear

Friction modifiers are added to lubricants in order to reduce friction and wear in machine components. They are particularly important in the boundary lubrication regime, where they can prevent solid surfaces from coming into direct contact, substantially reducing friction and wear.

Several classes of friction modifier additives exist, the main examples being organic friction modifiers (OFMs), oil-soluble organo-molybdenum additives, functionalized polymers, and dispersed nanoparticles.[1]

Reduction of frictional losses and through more efficient lubrication is a key target in order to reduce carbon dioxide emissions.[7] One approach has been to progressively reduce lubricant viscosity to minimize hydrodynamic shear, churning and pumping losses.[1] However, this means that an increased number of components operate under boundary lubrication conditions. This has led to a resurgence in interest in friction modifier additives, particularly OFMs. For example, recent tribology experiments[8] and molecular dynamics simulations[9] have given new insights into their behaviour under boundary lubrication conditions.

See also

[edit ]
  • Oil additive – Chemical compounds that improve the lubricant performance of base oil
  • Lubricant – Substance introduced to reduce friction between surfaces in mutual contact
  • Tribology – Science and engineering of interacting surfaces in relative motion

References

[edit ]
  1. ^ a b c d e Spikes, Hugh (2015年10月01日). "Friction Modifier Additives". Tribology Letters. 60 (1): 5. doi:10.1007/s11249-015-0589-z. hdl:10044/1/25879 . ISSN 1023-8883. S2CID 137884697.
  2. ^ Hardy, W. B.; Doubleday, Ida (1922年03月01日). "Boundary Lubrication. The Paraffin Series". Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 100 (707): 550–574. Bibcode:1922RSPSA.100..550H. doi:10.1098/rspa.1922.0017 . ISSN 1364-5021.
  3. ^ Braithwaite, E. R.; Greene, A. B. (1978年02月01日). "A critical analysis of the performance of molybdenum compounds in motor vehicles". Wear. 46 (2): 405–432. doi:10.1016/0043-1648(78)90044-3.
  4. ^ Grossiord, C; Varlot, K; Martin, J. -M; Le Mogne, Th; Esnouf, C; Inoue, K (1998年12月01日). "MoS2 single sheet lubrication by molybdenum dithiocarbamate". Tribology International. 31 (12): 737–743. doi:10.1016/S0301-679X(98)00094-2. ISSN 0301-679X.
  5. ^ Guangteng, G; Smeeth, M; Cann, P M; Spikes, H A (1996年03月01日). "Measurement and Modelling of Boundary Film Properties of Polymeric Lubricant Additives". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 210 (1): 1–15. doi:10.1243/PIME_PROC_1996_210_473_02. ISSN 1350-6501. S2CID 136658009.
  6. ^ Dai, Wei; Kheireddin, Bassem; Gao, Hong; Liang, Hong (2016年10月01日). "Roles of nanoparticles in oil lubrication". Tribology International. 102: 88–98. doi:10.1016/j.triboint.2016年05月02日0. ISSN 0301-679X.
  7. ^ Holmberg, Kenneth; Andersson, Peter; Erdemir, Ali (2012年03月01日). "Global energy consumption due to friction in passenger cars". Tribology International. 47 (Supplement C): 221–234. doi:10.1016/j.triboint.2011年11月02日2.
  8. ^ Campen, Sophie; Green, Jonathan; Lamb, Gordon; Atkinson, David; Spikes, Hugh (2012年11月01日). "On the Increase in Boundary Friction with Sliding Speed". Tribology Letters. 48 (2): 237–248. doi:10.1007/s11249-012-0019-4. ISSN 1023-8883. S2CID 135749402.
  9. ^ Ewen, James P.; Gattinoni, Chiara; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele (2016年05月10日). "Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces". Langmuir. 32 (18): 4450–4463. doi:10.1021/acs.langmuir.6b00586 . hdl:10044/1/30875 . ISSN 0743-7463. PMID 27064962.

AltStyle によって変換されたページ (->オリジナル) /