Jump to content
Wikipedia The Free Encyclopedia

Fröberg conjecture

From Wikipedia, the free encyclopedia

In algebraic geometry, the Fröberg conjecture is a conjecture about the possible Hilbert functions of a set of forms. It is named after Ralf Fröberg, who introduced it in Fröberg (1985, page 120). The Fröberg–Iarrobino conjecture is a generalization introduced by Anthony Iarrobino (1997).

Statement of Conjecture

[edit ]

Given generic homogeneous polynomials g 1 , g 2 , , g k C [ x 1 , x 2 , , x n ] {\displaystyle g_{1},g_{2},\ldots ,g_{k}\in \mathbb {C} [x_{1},x_{2},\ldots ,x_{n}]} {\displaystyle g_{1},g_{2},\ldots ,g_{k}\in \mathbb {C} [x_{1},x_{2},\ldots ,x_{n}]} of degrees a 1 , a 2 , , a k {\displaystyle a_{1},a_{2},\ldots ,a_{k}} {\displaystyle a_{1},a_{2},\ldots ,a_{k}} resp. Then the Hilbert Series of C [ x 1 , x 2 , , x n ] / g 1 , g 2 , , g k {\displaystyle \mathbb {C} [x_{1},x_{2},\ldots ,x_{n}]/\langle g_{1},g_{2},\ldots ,g_{k}\rangle } {\displaystyle \mathbb {C} [x_{1},x_{2},\ldots ,x_{n}]/\langle g_{1},g_{2},\ldots ,g_{k}\rangle } is ( 1 + t + t 2 + ) n ( 1 t a 1 ) ( 1 t a 2 ) ( 1 t a k ) {\displaystyle {(1+t+t^{2}+\ldots )^{n}}{(1-t^{a_{1}})(1-t^{a_{2}})\cdots (1-t^{a_{k}})}} {\displaystyle {(1+t+t^{2}+\ldots )^{n}}{(1-t^{a_{1}})(1-t^{a_{2}})\cdots (1-t^{a_{k}})}} truncated at its first negative term.

References

[edit ]
Stub icon

This algebraic geometry–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /