Forster–Swan theorem
The Forster–Swan theorem is a result from commutative algebra that states an upper bound for the minimal number of generators of a finitely generated module {\displaystyle M} over a commutative Noetherian ring. The usefulness of the theorem stems from the fact, that in order to form the bound, one only need the minimum number of generators of all localizations {\displaystyle M_{\mathfrak {p}}}.
The theorem was proven in a more restrictive form in 1964 by Otto Forster [1] and then in 1967 generalized by Richard G. Swan [2] to its modern form.
Forster–Swan theorem
[edit ]Let
- {\displaystyle R} be a commutative Noetherian ring with one,
- {\displaystyle M} be a finitely generated {\displaystyle R}-module,
- {\displaystyle {\mathfrak {p}}} a prime ideal of {\displaystyle R}.
- {\displaystyle \mu (M),\mu _{\mathfrak {p}}(M)} are the minimal die number of generators to generated the {\displaystyle R}-module {\displaystyle M} respectively the {\displaystyle R_{\mathfrak {p}}}-module {\displaystyle M_{\mathfrak {p}}}.
According to Nakayama's lemma, in order to compute {\displaystyle \mu _{\mathfrak {p}}(M)} one can compute the dimension of {\displaystyle M_{\mathfrak {p}}/{\mathfrak {p}}M} over the field {\displaystyle k({\mathfrak {p}})=R_{\mathfrak {p}}/{\mathfrak {p}}R_{\mathfrak {p}}}, i.e.
- {\displaystyle \mu _{\mathfrak {p}}(M)=\operatorname {dim} _{k({\mathfrak {p}})}(M_{\mathfrak {p}}/{\mathfrak {p}}M).}
Statement
[edit ]Define the local {\displaystyle {\mathfrak {p}}}-bound
- {\displaystyle b_{\mathfrak {p}}(M):=\mu _{\mathfrak {p}}(M)+\operatorname {dim} (R/{\mathfrak {p}}),}
then the following holds[3]
- {\displaystyle \mu (M)\leq \sup _{\mathfrak {p}}\;\{b_{\mathfrak {p}}(M)\;|\;{\mathfrak {p}}\;{\text{is prime}},\;M_{\mathfrak {p}}\neq 0\}.}
Bibliography
[edit ]- Rao, R.A.; Ischebeck, F. (2005). Ideals and Reality: Projective Modules and Number of Generators of Ideals. Deutschland: Physica-Verlag.
- Swan, Richard G. (1967). "The number of generators of a module". Math. Mathematische Zeitschrift. 102 (4): 318–322. doi:10.1007/BF01110912.
References
[edit ]- ^ Forster, Otto (1964). "Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring". Mathematische Zeitschrift. 84: 80–87. doi:10.1007/BF01112211.
- ^ Swan, Richard G. (1967). "The number of generators of a module". Math. Mathematische Zeitschrift. 102 (4): 318–322. doi:10.1007/BF01110912.
- ^ R. A. Rao und F. Ischebeck (2005), Physica-Verlag (ed.), Ideals and Reality: Projective Modules and Number of Generators of Ideals, Deutschland, p. 221
{{citation}}
: CS1 maint: location missing publisher (link)