Jump to content
Wikipedia The Free Encyclopedia

Feynman slash notation

From Wikipedia, the free encyclopedia
Notation for contractions with gamma matrices

In the study of Dirac fields in quantum field theory, Richard Feynman introduced the convenient Feynman slash notation (less commonly known as the Dirac slash notation[1] ). If A is a covariant vector (i.e., a 1-form),

A /   = d e f   γ 0 A 0 + γ 1 A 1 + γ 2 A 2 + γ 3 A 3 {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{0}A_{0}+\gamma ^{1}A_{1}+\gamma ^{2}A_{2}+\gamma ^{3}A_{3}} {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{0}A_{0}+\gamma ^{1}A_{1}+\gamma ^{2}A_{2}+\gamma ^{3}A_{3}}

where γ are the gamma matrices. Using the Einstein summation notation, the expression is simply

A /   = d e f   γ μ A μ {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{\mu }A_{\mu }} {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{\mu }A_{\mu }}.

Identities

[edit ]

Using the anticommutators of the gamma matrices, one can show that for any a μ {\displaystyle a_{\mu }} {\displaystyle a_{\mu }} and b μ {\displaystyle b_{\mu }} {\displaystyle b_{\mu }},

a / a / = a μ a μ I 4 = a 2 I 4 a / b / + b / a / = 2 a b I 4 . {\displaystyle {\begin{aligned}{a\!\!\!/}{a\!\!\!/}=a^{\mu }a_{\mu }\cdot I_{4}=a^{2}\cdot I_{4}\\{a\!\!\!/}{b\!\!\!/}+{b\!\!\!/}{a\!\!\!/}=2a\cdot b\cdot I_{4}.\end{aligned}}} {\displaystyle {\begin{aligned}{a\!\!\!/}{a\!\!\!/}=a^{\mu }a_{\mu }\cdot I_{4}=a^{2}\cdot I_{4}\\{a\!\!\!/}{b\!\!\!/}+{b\!\!\!/}{a\!\!\!/}=2a\cdot b\cdot I_{4}.\end{aligned}}}

where I 4 {\displaystyle I_{4}} {\displaystyle I_{4}} is the identity matrix in four dimensions.

In particular,

/ 2 = 2 I 4 . {\displaystyle {\partial \!\!\!/}^{2}=\partial ^{2}\cdot I_{4}.} {\displaystyle {\partial \!\!\!/}^{2}=\partial ^{2}\cdot I_{4}.}

Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,

γ μ a / γ μ = 2 a / γ μ a / b / γ μ = 4 a b I 4 γ μ a / b / c / γ μ = 2 c / b / a / γ μ a / b / c / d / γ μ = 2 ( d / a / b / c / + c / b / a / d / ) tr ( a / b / ) = 4 a b tr ( a / b / c / d / ) = 4 [ ( a b ) ( c d ) ( a c ) ( b d ) + ( a d ) ( b c ) ] tr ( a / γ μ b / γ ν ) = 4 [ a μ b ν + a ν b μ η μ ν ( a b ) ] tr ( γ 5 a / b / c / d / ) = 4 i ε μ ν λ σ a μ b ν c λ d σ tr ( γ μ a / γ ν ) = 0 tr ( γ 5 a / b / ) = 0 tr ( γ 0 ( a / + m ) γ 0 ( b / + m ) ) = 8 a 0 b 0 4 ( a b ) + 4 m 2 tr ( ( a / + m ) γ μ ( b / + m ) γ ν ) = 4 [ a μ b ν + a ν b μ η μ ν ( ( a b ) m 2 ) ] tr ( a / 1 . . . a / 2 n ) = tr ( a / 2 n . . . a / 1 ) tr ( a / 1 . . . a / 2 n + 1 ) = 0 {\displaystyle {\begin{aligned}\gamma _{\mu }{a\!\!\!/}\gamma ^{\mu }&=-2{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}\gamma ^{\mu }&=4a\cdot b\cdot I_{4}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}\gamma ^{\mu }&=-2{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}\gamma ^{\mu }&=2({d\!\!\!/}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}+{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}{d\!\!\!/})\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/})&=4a\cdot b\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4\left[(a\cdot b)(c\cdot d)-(a\cdot c)(b\cdot d)+(a\cdot d)(b\cdot c)\right]\\\operatorname {tr} ({a\!\!\!/}{\gamma ^{\mu }}{b\!\!\!/}{\gamma ^{\nu }})&=4\left[a^{\mu }b^{\nu }+a^{\nu }b^{\mu }-\eta ^{\mu \nu }(a\cdot b)\right]\\\operatorname {tr} (\gamma _{5}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4i\varepsilon _{\mu \nu \lambda \sigma }a^{\mu }b^{\nu }c^{\lambda }d^{\sigma }\\\operatorname {tr} ({\gamma ^{\mu }}{a\!\!\!/}{\gamma ^{\nu }})&=0\\\operatorname {tr} ({\gamma ^{5}}{a\!\!\!/}{b\!\!\!/})&=0\\\operatorname {tr} ({\gamma ^{0}}({a\!\!\!/}+m){\gamma ^{0}}({b\!\!\!/}+m))&=8a^{0}b^{0}-4(a\cdot b)+4m^{2}\\\operatorname {tr} (({a\!\!\!/}+m){\gamma ^{\mu }}({b\!\!\!/}+m){\gamma ^{\nu }})&=4\left[a^{\mu }b^{\nu }+a^{\nu }b^{\mu }-\eta ^{\mu \nu }((a\cdot b)-m^{2})\right]\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n})&=\operatorname {tr} ({a\!\!\!/}_{2n}...{a\!\!\!/}_{1})\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n+1})&=0\end{aligned}}} {\displaystyle {\begin{aligned}\gamma _{\mu }{a\!\!\!/}\gamma ^{\mu }&=-2{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}\gamma ^{\mu }&=4a\cdot b\cdot I_{4}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}\gamma ^{\mu }&=-2{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}\gamma ^{\mu }&=2({d\!\!\!/}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}+{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}{d\!\!\!/})\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/})&=4a\cdot b\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4\left[(a\cdot b)(c\cdot d)-(a\cdot c)(b\cdot d)+(a\cdot d)(b\cdot c)\right]\\\operatorname {tr} ({a\!\!\!/}{\gamma ^{\mu }}{b\!\!\!/}{\gamma ^{\nu }})&=4\left[a^{\mu }b^{\nu }+a^{\nu }b^{\mu }-\eta ^{\mu \nu }(a\cdot b)\right]\\\operatorname {tr} (\gamma _{5}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4i\varepsilon _{\mu \nu \lambda \sigma }a^{\mu }b^{\nu }c^{\lambda }d^{\sigma }\\\operatorname {tr} ({\gamma ^{\mu }}{a\!\!\!/}{\gamma ^{\nu }})&=0\\\operatorname {tr} ({\gamma ^{5}}{a\!\!\!/}{b\!\!\!/})&=0\\\operatorname {tr} ({\gamma ^{0}}({a\!\!\!/}+m){\gamma ^{0}}({b\!\!\!/}+m))&=8a^{0}b^{0}-4(a\cdot b)+4m^{2}\\\operatorname {tr} (({a\!\!\!/}+m){\gamma ^{\mu }}({b\!\!\!/}+m){\gamma ^{\nu }})&=4\left[a^{\mu }b^{\nu }+a^{\nu }b^{\mu }-\eta ^{\mu \nu }((a\cdot b)-m^{2})\right]\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n})&=\operatorname {tr} ({a\!\!\!/}_{2n}...{a\!\!\!/}_{1})\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n+1})&=0\end{aligned}}}

where:

  • ε μ ν λ σ {\displaystyle \varepsilon _{\mu \nu \lambda \sigma }} {\displaystyle \varepsilon _{\mu \nu \lambda \sigma }} is the Levi-Civita symbol
  • η μ ν {\displaystyle \eta ^{\mu \nu }} {\displaystyle \eta ^{\mu \nu }} is the Minkowski metric
  • m {\displaystyle m} {\displaystyle m} is a scalar.

With four-momentum

[edit ]

This section uses the (+ − − −) metric signature. Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum: using the Dirac basis for the gamma matrices,

γ 0 = ( I 0 0 I ) , γ i = ( 0 σ i σ i 0 ) {\displaystyle \gamma ^{0}={\begin{pmatrix}I&0\0円&-I\end{pmatrix}},\quad \gamma ^{i}={\begin{pmatrix}0&\sigma ^{i}\\-\sigma ^{i}&0\end{pmatrix}},円} {\displaystyle \gamma ^{0}={\begin{pmatrix}I&0\0円&-I\end{pmatrix}},\quad \gamma ^{i}={\begin{pmatrix}0&\sigma ^{i}\\-\sigma ^{i}&0\end{pmatrix}},円}

as well as the definition of contravariant four-momentum in natural units,

p μ = ( E , p x , p y , p z ) {\displaystyle p^{\mu }=\left(E,p_{x},p_{y},p_{z}\right),円} {\displaystyle p^{\mu }=\left(E,p_{x},p_{y},p_{z}\right),円}

we see explicitly that

p / = γ μ p μ = γ 0 p 0 γ i p i = [ p 0 0 0 p 0 ] [ 0 σ i p i σ i p i 0 ] = [ E σ p σ p E ] . {\displaystyle {\begin{aligned}{p\!\!/}&=\gamma ^{\mu }p_{\mu }=\gamma ^{0}p^{0}-\gamma ^{i}p^{i}\\&={\begin{bmatrix}p^{0}&0\0円&-p^{0}\end{bmatrix}}-{\begin{bmatrix}0&\sigma ^{i}p^{i}\\-\sigma ^{i}p^{i}&0\end{bmatrix}}\\&={\begin{bmatrix}E&-{\vec {\sigma }}\cdot {\vec {p}}\\{\vec {\sigma }}\cdot {\vec {p}}&-E\end{bmatrix}}.\end{aligned}}} {\displaystyle {\begin{aligned}{p\!\!/}&=\gamma ^{\mu }p_{\mu }=\gamma ^{0}p^{0}-\gamma ^{i}p^{i}\\&={\begin{bmatrix}p^{0}&0\0円&-p^{0}\end{bmatrix}}-{\begin{bmatrix}0&\sigma ^{i}p^{i}\\-\sigma ^{i}p^{i}&0\end{bmatrix}}\\&={\begin{bmatrix}E&-{\vec {\sigma }}\cdot {\vec {p}}\\{\vec {\sigma }}\cdot {\vec {p}}&-E\end{bmatrix}}.\end{aligned}}}

Similar results hold in other bases, such as the Weyl basis.

See also

[edit ]

References

[edit ]
  1. ^ Weinberg, Steven (1995), The Quantum Theory of Fields, vol. 1, Cambridge University Press, p. 358 (380 in polish edition), ISBN 0-521-55001-7
Career
Works
Family
Related
Stub icon

This quantum mechanics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /