Faxén integral
Appearance
From Wikipedia, the free encyclopedia
In mathematics, the Faxén integral (also named Faxén function) is the following integral [1]
- {\displaystyle \operatorname {Fi} (\alpha ,\beta ;x)=\int _{0}^{\infty }\exp(-t+xt^{\alpha })t^{\beta -1}\mathrm {d} t,\qquad (0\leq \operatorname {Re} (\alpha )<1,\;\operatorname {Re} (\beta )>0).}
The integral is named after the Swedish physicist Olov Hilding Faxén, who published it in 1921 in his PhD thesis.[2]
n-dimensional Faxén integral
[edit ]More generally one defines the {\displaystyle n}-dimensional Faxén integral as[3]
- {\displaystyle I_{n}(x)=\lambda _{n}\int _{0}^{\infty }\cdots \int _{0}^{\infty }t_{1}^{\beta _{1}-1}\cdots t_{n}^{\beta _{n}-1}e^{-f(t_{1},\dots ,t_{n};x)}\mathrm {d} t_{1}\cdots \mathrm {d} t_{n},}
with
- {\displaystyle f(t_{1},\dots ,t_{n};x):=\sum \limits _{j=1}^{n}t_{j}^{\mu _{j}}-xt_{1}^{\alpha _{1}}\cdots t_{n}^{\alpha _{n}}\quad } and {\displaystyle \quad \lambda _{n}:=\prod \limits _{j=1}^{n}\mu _{j}}
for {\displaystyle x\in \mathbb {C} } and
- {\displaystyle (0<\alpha _{i}<\mu _{i},\;\operatorname {Re} (\beta _{i})>0,\;i=1,\dots ,n).}
The parameter {\displaystyle \lambda _{n}} is only for convenience in calculations.
Properties
[edit ]Let {\displaystyle \Gamma } denote the Gamma function, then
- {\displaystyle \operatorname {Fi} (\alpha ,\beta ;0)=\Gamma (\beta ),}
- {\displaystyle \operatorname {Fi} (0,\beta ;x)=e^{x}\Gamma (\beta ).}
For {\displaystyle \alpha =\beta ={\tfrac {1}{3}}} one has the following relationship to the Scorer function
- {\displaystyle \operatorname {Fi} ({\tfrac {1}{3}},{\tfrac {1}{3}};x)=3^{2/3}\pi \operatorname {Hi} (3^{-1/3}x).}
Asymptotics
[edit ]For {\displaystyle x\to \infty } we have the following asymptotics[4]
- {\displaystyle \operatorname {Fi} (\alpha ,\beta ;-x)\sim {\frac {\Gamma (\beta /\alpha )}{\alpha y^{\beta /\alpha }}},}
- {\displaystyle \operatorname {Fi} (\alpha ,\beta ;x)\sim \left({\frac {2\pi }{1-\alpha }}\right)^{1/2}(\alpha x)^{(2\beta -1)/(2-2\alpha )}\exp \left((1-\alpha )(\alpha ^{\alpha }y)^{1/(1-\alpha )}\right).}
References
[edit ]- ^ Olver, Frank W. J. (1997). Asymptotics and Special Functions. A K Peters/CRC Press. p. 332. doi:10.1201/9781439864548. ISBN 978-0-429-06461-6.
- ^ Faxén, Hilding (1921). Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit (PhD). Uppsala University.
- ^ Paris, Richard Bruce (2010). "Asymptotic expansion of n-dimensional Faxén-type integrals". European Journal of Pure and Applied Mathematics. 3 (6). A K Peters/CRC Press: 1006–1031.
- ^ Kaminski, David; Paris, Richard B. (1997). "Asymptotics via iterated Mellin–Barnes integrals: Application to the generalised Faxén integral". Methods and Applications of Analysis. 4 (3): 311–325. doi:10.4310/MAA.1997.v4.n3.a5.