Jump to content
Wikipedia The Free Encyclopedia

Crossover switch

From Wikipedia, the free encyclopedia
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Crossover switch" – news · newspapers · books · scholar · JSTOR
(June 2022) (Learn how and when to remove this message)

In electronics, a crossover switch or matrix switch is a switch connecting multiple inputs to multiple outputs using complex array matrices designed to switch inputs to outputs such that each output is connected to only one input, but usually inputs may be connected to multiple outputs. There are blocking and non-blocking types of cross-over switches. In a non blocking switch, the switch allows arbitrary interconnections and disconnections to each output at all times whereas a blocking switch new connections can be constrained by other connections.

These switches can be microelectromechanical systems, electrical, or nonlinear optical systems, and are used in electronics and fiber optic circuits, as well as some optical computers.[1] A banyan switch is one type of cross-over switch. Their complexity depends on the topology of the individual switches in a switch matrix (how wide it is by how many 'plies' or layers of switches it takes), to implement the desired crossover logic.

Formula

[edit ]

Typical crossover matrices follow the formula: an ×ばつN Banyan switch uses (N/2) log N elements. Other formulas are used for differing number of cross-over layers, and scaling is possible, but becomes very large and complex with large ×ばつN arrays. CAD and AI can be used to take the drudgery out of these designs.

Measurement

[edit ]

The switches are measured by how many stages, and how many up/down sorters and crosspoints. Switches often have buffers built in to speed up switching speeds. A typical[clarification needed ] switch may have a ×ばつ2 and ×ばつ4 down sorter, followed by an ×ばつ8 up sorter, followed by a ×ばつ2 crosspoint banyan switch network, resulting in a 3-level sorting for a 3-stage banyan network switch.[citation needed ] The future is moving to larger arrays of inputs and outputs needed in a very small space.

See also

[edit ]

References

[edit ]
  1. ^ Picton, P. D. (1994年09月01日). "Modified Fredkin gates in logic design". Microelectronics Journal. 25 (6): 437–441. doi:10.1016/0026-2692(94)90068-X. ISSN 0026-2692.


Switch types
History
Pioneers
Transmission
media
Network topology
and switching
Multiplexing
Concepts
Types of network
Notable networks
Locations
Stub icon

This electronics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /