Jump to content
Wikipedia The Free Encyclopedia

Cross-covariance matrix

From Wikipedia, the free encyclopedia
Part of a series on Statistics
Correlation and covariance
Not to be confused with Covariance matrix.
Type of matrix in probability theory and statistics

In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. When the two random vectors are the same, the cross-covariance matrix is referred to as covariance matrix. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution. Intuitively, the cross-covariance matrix generalizes the notion of covariance to multiple dimensions.

The cross-covariance matrix of two random vectors X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} } is typically denoted by K X Y {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} or Σ X Y {\displaystyle \Sigma _{\mathbf {X} \mathbf {Y} }} {\displaystyle \Sigma _{\mathbf {X} \mathbf {Y} }}.

Definition

[edit ]

For random vectors X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} }, each containing random elements whose expected value and variance exist, the cross-covariance matrix of X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} } is defined by[1] : 336 

K X Y = cov ( X , Y ) = d e f   E [ ( X μ X ) ( Y μ Y ) T ] {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }=\operatorname {cov} (\mathbf {X} ,\mathbf {Y} ){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} [(\mathbf {X} -\mathbf {\mu _{X}} )(\mathbf {Y} -\mathbf {\mu _{Y}} )^{\rm {T}}]} {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }=\operatorname {cov} (\mathbf {X} ,\mathbf {Y} ){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} [(\mathbf {X} -\mathbf {\mu _{X}} )(\mathbf {Y} -\mathbf {\mu _{Y}} )^{\rm {T}}]} Eq.1

where μ X = E [ X ] {\displaystyle \mathbf {\mu _{X}} =\operatorname {E} [\mathbf {X} ]} {\displaystyle \mathbf {\mu _{X}} =\operatorname {E} [\mathbf {X} ]} and μ Y = E [ Y ] {\displaystyle \mathbf {\mu _{Y}} =\operatorname {E} [\mathbf {Y} ]} {\displaystyle \mathbf {\mu _{Y}} =\operatorname {E} [\mathbf {Y} ]} are vectors containing the expected values of X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} }. The vectors X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} } need not have the same dimension, and either might be a scalar value.

The cross-covariance matrix is the matrix whose ( i , j ) {\displaystyle (i,j)} {\displaystyle (i,j)} entry is the covariance

K X i Y j = cov [ X i , Y j ] = E [ ( X i E [ X i ] ) ( Y j E [ Y j ] ) ] {\displaystyle \operatorname {K} _{X_{i}Y_{j}}=\operatorname {cov} [X_{i},Y_{j}]=\operatorname {E} [(X_{i}-\operatorname {E} [X_{i}])(Y_{j}-\operatorname {E} [Y_{j}])]} {\displaystyle \operatorname {K} _{X_{i}Y_{j}}=\operatorname {cov} [X_{i},Y_{j}]=\operatorname {E} [(X_{i}-\operatorname {E} [X_{i}])(Y_{j}-\operatorname {E} [Y_{j}])]}

between the i-th element of X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and the j-th element of Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} }. This gives the following component-wise definition of the cross-covariance matrix.

K X Y = [ E [ ( X 1 E [ X 1 ] ) ( Y 1 E [ Y 1 ] ) ] E [ ( X 1 E [ X 1 ] ) ( Y 2 E [ Y 2 ] ) ] E [ ( X 1 E [ X 1 ] ) ( Y n E [ Y n ] ) ] E [ ( X 2 E [ X 2 ] ) ( Y 1 E [ Y 1 ] ) ] E [ ( X 2 E [ X 2 ] ) ( Y 2 E [ Y 2 ] ) ] E [ ( X 2 E [ X 2 ] ) ( Y n E [ Y n ] ) ] E [ ( X m E [ X m ] ) ( Y 1 E [ Y 1 ] ) ] E [ ( X m E [ X m ] ) ( Y 2 E [ Y 2 ] ) ] E [ ( X m E [ X m ] ) ( Y n E [ Y n ] ) ] ] {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }={\begin{bmatrix}\mathrm {E} [(X_{1}-\operatorname {E} [X_{1}])(Y_{1}-\operatorname {E} [Y_{1}])]&\mathrm {E} [(X_{1}-\operatorname {E} [X_{1}])(Y_{2}-\operatorname {E} [Y_{2}])]&\cdots &\mathrm {E} [(X_{1}-\operatorname {E} [X_{1}])(Y_{n}-\operatorname {E} [Y_{n}])]\\\\\mathrm {E} [(X_{2}-\operatorname {E} [X_{2}])(Y_{1}-\operatorname {E} [Y_{1}])]&\mathrm {E} [(X_{2}-\operatorname {E} [X_{2}])(Y_{2}-\operatorname {E} [Y_{2}])]&\cdots &\mathrm {E} [(X_{2}-\operatorname {E} [X_{2}])(Y_{n}-\operatorname {E} [Y_{n}])]\\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} [(X_{m}-\operatorname {E} [X_{m}])(Y_{1}-\operatorname {E} [Y_{1}])]&\mathrm {E} [(X_{m}-\operatorname {E} [X_{m}])(Y_{2}-\operatorname {E} [Y_{2}])]&\cdots &\mathrm {E} [(X_{m}-\operatorname {E} [X_{m}])(Y_{n}-\operatorname {E} [Y_{n}])]\end{bmatrix}}} {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }={\begin{bmatrix}\mathrm {E} [(X_{1}-\operatorname {E} [X_{1}])(Y_{1}-\operatorname {E} [Y_{1}])]&\mathrm {E} [(X_{1}-\operatorname {E} [X_{1}])(Y_{2}-\operatorname {E} [Y_{2}])]&\cdots &\mathrm {E} [(X_{1}-\operatorname {E} [X_{1}])(Y_{n}-\operatorname {E} [Y_{n}])]\\\\\mathrm {E} [(X_{2}-\operatorname {E} [X_{2}])(Y_{1}-\operatorname {E} [Y_{1}])]&\mathrm {E} [(X_{2}-\operatorname {E} [X_{2}])(Y_{2}-\operatorname {E} [Y_{2}])]&\cdots &\mathrm {E} [(X_{2}-\operatorname {E} [X_{2}])(Y_{n}-\operatorname {E} [Y_{n}])]\\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} [(X_{m}-\operatorname {E} [X_{m}])(Y_{1}-\operatorname {E} [Y_{1}])]&\mathrm {E} [(X_{m}-\operatorname {E} [X_{m}])(Y_{2}-\operatorname {E} [Y_{2}])]&\cdots &\mathrm {E} [(X_{m}-\operatorname {E} [X_{m}])(Y_{n}-\operatorname {E} [Y_{n}])]\end{bmatrix}}}

Example

[edit ]

For example, if X = ( X 1 , X 2 , X 3 ) T {\displaystyle \mathbf {X} =\left(X_{1},X_{2},X_{3}\right)^{\rm {T}}} {\displaystyle \mathbf {X} =\left(X_{1},X_{2},X_{3}\right)^{\rm {T}}} and Y = ( Y 1 , Y 2 ) T {\displaystyle \mathbf {Y} =\left(Y_{1},Y_{2}\right)^{\rm {T}}} {\displaystyle \mathbf {Y} =\left(Y_{1},Y_{2}\right)^{\rm {T}}} are random vectors, then cov ( X , Y ) {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )} {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )} is a 3 × 2 {\displaystyle 3\times 2} {\displaystyle 3\times 2} matrix whose ( i , j ) {\displaystyle (i,j)} {\displaystyle (i,j)}-th entry is cov ( X i , Y j ) {\displaystyle \operatorname {cov} (X_{i},Y_{j})} {\displaystyle \operatorname {cov} (X_{i},Y_{j})}.

Properties

[edit ]

For the cross-covariance matrix, the following basic properties apply:[2]

  1. cov ( X , Y ) = E [ X Y T ] μ X μ Y T {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=\operatorname {E} [\mathbf {X} \mathbf {Y} ^{\rm {T}}]-\mathbf {\mu _{X}} \mathbf {\mu _{Y}} ^{\rm {T}}} {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=\operatorname {E} [\mathbf {X} \mathbf {Y} ^{\rm {T}}]-\mathbf {\mu _{X}} \mathbf {\mu _{Y}} ^{\rm {T}}}
  2. cov ( X , Y ) = cov ( Y , X ) T {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=\operatorname {cov} (\mathbf {Y} ,\mathbf {X} )^{\rm {T}}} {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=\operatorname {cov} (\mathbf {Y} ,\mathbf {X} )^{\rm {T}}}
  3. cov ( X 1 + X 2 , Y ) = cov ( X 1 , Y ) + cov ( X 2 , Y ) {\displaystyle \operatorname {cov} (\mathbf {X_{1}} +\mathbf {X_{2}} ,\mathbf {Y} )=\operatorname {cov} (\mathbf {X_{1}} ,\mathbf {Y} )+\operatorname {cov} (\mathbf {X_{2}} ,\mathbf {Y} )} {\displaystyle \operatorname {cov} (\mathbf {X_{1}} +\mathbf {X_{2}} ,\mathbf {Y} )=\operatorname {cov} (\mathbf {X_{1}} ,\mathbf {Y} )+\operatorname {cov} (\mathbf {X_{2}} ,\mathbf {Y} )}
  4. cov ( A X + a , B T Y + b ) = A cov ( X , Y ) B {\displaystyle \operatorname {cov} (A\mathbf {X} +\mathbf {a} ,B^{\rm {T}}\mathbf {Y} +\mathbf {b} )=A,円\operatorname {cov} (\mathbf {X} ,\mathbf {Y} ),円B} {\displaystyle \operatorname {cov} (A\mathbf {X} +\mathbf {a} ,B^{\rm {T}}\mathbf {Y} +\mathbf {b} )=A,円\operatorname {cov} (\mathbf {X} ,\mathbf {Y} ),円B}
  5. If X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} } are independent (or somewhat less restrictedly, if every random variable in X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } is uncorrelated with every random variable in Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} }), then cov ( X , Y ) = 0 p × q {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=0_{p\times q}} {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=0_{p\times q}}

where X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} }, X 1 {\displaystyle \mathbf {X_{1}} } {\displaystyle \mathbf {X_{1}} } and X 2 {\displaystyle \mathbf {X_{2}} } {\displaystyle \mathbf {X_{2}} } are random p × 1 {\displaystyle p\times 1} {\displaystyle p\times 1} vectors, Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} } is a random q × 1 {\displaystyle q\times 1} {\displaystyle q\times 1} vector, a {\displaystyle \mathbf {a} } {\displaystyle \mathbf {a} } is a q × 1 {\displaystyle q\times 1} {\displaystyle q\times 1} vector, b {\displaystyle \mathbf {b} } {\displaystyle \mathbf {b} } is a p × 1 {\displaystyle p\times 1} {\displaystyle p\times 1} vector, A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B} are q × p {\displaystyle q\times p} {\displaystyle q\times p} matrices of constants, and 0 p × q {\displaystyle 0_{p\times q}} {\displaystyle 0_{p\times q}} is a p × q {\displaystyle p\times q} {\displaystyle p\times q} matrix of zeroes.

Definition for complex random vectors

[edit ]

If Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } {\displaystyle \mathbf {W} } are complex random vectors, the definition of the cross-covariance matrix is slightly changed. Transposition is replaced by Hermitian transposition:

K Z W = cov ( Z , W ) = d e f   E [ ( Z μ Z ) ( W μ W ) H ] {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} (\mathbf {Z} ,\mathbf {W} ){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} [(\mathbf {Z} -\mathbf {\mu _{Z}} )(\mathbf {W} -\mathbf {\mu _{W}} )^{\rm {H}}]} {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} (\mathbf {Z} ,\mathbf {W} ){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} [(\mathbf {Z} -\mathbf {\mu _{Z}} )(\mathbf {W} -\mathbf {\mu _{W}} )^{\rm {H}}]}

For complex random vectors, another matrix called the pseudo-cross-covariance matrix is defined as follows:

J Z W = cov ( Z , W ¯ ) = d e f   E [ ( Z μ Z ) ( W μ W ) T ] {\displaystyle \operatorname {J} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} (\mathbf {Z} ,{\overline {\mathbf {W} }}){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} [(\mathbf {Z} -\mathbf {\mu _{Z}} )(\mathbf {W} -\mathbf {\mu _{W}} )^{\rm {T}}]} {\displaystyle \operatorname {J} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} (\mathbf {Z} ,{\overline {\mathbf {W} }}){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} [(\mathbf {Z} -\mathbf {\mu _{Z}} )(\mathbf {W} -\mathbf {\mu _{W}} )^{\rm {T}}]}

Uncorrelatedness

[edit ]

Two random vectors X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} } are called uncorrelated if their cross-covariance matrix K X Y {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} matrix is a zero matrix.[1] : 337 

Complex random vectors Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } {\displaystyle \mathbf {W} } are called uncorrelated if their covariance matrix and pseudo-covariance matrix is zero, i.e. if K Z W = J Z W = 0 {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {J} _{\mathbf {Z} \mathbf {W} }=0} {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {J} _{\mathbf {Z} \mathbf {W} }=0}.

References

[edit ]
  1. ^ a b Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN 978-0-521-86470-1.
  2. ^ Taboga, Marco (2010). "Lectures on probability theory and mathematical statistics".

AltStyle によって変換されたページ (->オリジナル) /