Jump to content
Wikipedia The Free Encyclopedia

Characteristic state function

From Wikipedia, the free encyclopedia
Particular relationship between the partition function of an ensemble
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Characteristic state function" – news · newspapers · books · scholar · JSTOR
(July 2007) (Learn how and when to remove this message)

The characteristic state function or Massieu's potential[1] in statistical mechanics refers to a particular relationship between the partition function of an ensemble.

In particular, if the partition function P satisfies

P = exp ( β Q ) Q = 1 β ln ( P ) {\displaystyle P=\exp(-\beta Q)\Leftrightarrow Q=-{\frac {1}{\beta }}\ln(P)} {\displaystyle P=\exp(-\beta Q)\Leftrightarrow Q=-{\frac {1}{\beta }}\ln(P)} or P = exp ( + β Q ) Q = 1 β ln ( P ) {\displaystyle P=\exp(+\beta Q)\Leftrightarrow Q={\frac {1}{\beta }}\ln(P)} {\displaystyle P=\exp(+\beta Q)\Leftrightarrow Q={\frac {1}{\beta }}\ln(P)}

in which Q is a thermodynamic quantity, then Q is known as the "characteristic state function" of the ensemble corresponding to "P". Beta refers to the thermodynamic beta.

Examples

[edit ]
  • The microcanonical ensemble satisfies Ω ( U , V , N ) = e β T S {\displaystyle \Omega (U,V,N)=e^{\beta TS}\;,円} {\displaystyle \Omega (U,V,N)=e^{\beta TS}\;,円} hence, its characteristic state function is T S {\displaystyle TS} {\displaystyle TS}.
  • The canonical ensemble satisfies Z ( T , V , N ) = e β A {\displaystyle Z(T,V,N)=e^{-\beta A},円\;} {\displaystyle Z(T,V,N)=e^{-\beta A},円\;} hence, its characteristic state function is the Helmholtz free energy A {\displaystyle A} {\displaystyle A}.
  • The grand canonical ensemble satisfies Z ( T , V , μ ) = e β Φ {\displaystyle {\mathcal {Z}}(T,V,\mu )=e^{-\beta \Phi },円\;} {\displaystyle {\mathcal {Z}}(T,V,\mu )=e^{-\beta \Phi },円\;}, so its characteristic state function is the Grand potential Φ {\displaystyle \Phi } {\displaystyle \Phi }.
  • The isothermal-isobaric ensemble satisfies Δ ( N , T , P ) = e β G {\displaystyle \Delta (N,T,P)=e^{-\beta G}\;,円} {\displaystyle \Delta (N,T,P)=e^{-\beta G}\;,円} so its characteristic function is the Gibbs free energy G {\displaystyle G} {\displaystyle G}.

State functions are those which tell about the equilibrium state of a system

References

[edit ]
  1. ^ Balian, Roger (2017年11月01日). "François Massieu and the thermodynamic potentials". Comptes Rendus Physique. 18 (9–10): 526–530. Bibcode:2017CRPhy..18..526B. doi:10.1016/j.crhy.2017年09月01日1 . ISSN 1631-0705. "Massieu's potentials [...] are directly recovered as logarithms of partition functions."


Stub icon

This thermodynamics-related article is a stub. You can help Wikipedia by expanding it.

Stub icon

This article about statistical mechanics is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /