Jump to content
Wikipedia The Free Encyclopedia

Cartan–Eilenberg resolution

From Wikipedia, the free encyclopedia

In homological algebra, the Cartan–Eilenberg resolution is in a sense, a resolution of a chain complex. It can be used to construct hyper-derived functors. It is named in honor of Henri Cartan and Samuel Eilenberg.

Definition

[edit ]

Let A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} be an Abelian category with enough projectives, and let A {\displaystyle A_{*}} {\displaystyle A_{*}} be a chain complex with objects in A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}}. Then a Cartan–Eilenberg resolution of A {\displaystyle A_{*}} {\displaystyle A_{*}} is an upper half-plane double complex P , {\displaystyle P_{*,*}} {\displaystyle P_{*,*}} (i.e., P p , q = 0 {\displaystyle P_{p,q}=0} {\displaystyle P_{p,q}=0} for q < 0 {\displaystyle q<0} {\displaystyle q<0}) consisting of projective objects of A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} and an "augmentation" chain map ε : P p , A p {\displaystyle \varepsilon \colon P_{p,*}\to A_{p}} {\displaystyle \varepsilon \colon P_{p,*}\to A_{p}} such that

  • If A p = 0 {\displaystyle A_{p}=0} {\displaystyle A_{p}=0} then the p-th column is zero, i.e. P p , q = 0 {\displaystyle P_{p,q}=0} {\displaystyle P_{p,q}=0} for all q.
  • For any fixed column P p , {\displaystyle P_{p,*}} {\displaystyle P_{p,*}},
    • The complex of boundaries B p ( P , d h ) := d h ( P p + 1. ) {\displaystyle B_{p}(P,d^{h}):=d^{h}(P_{p+1.*})} {\displaystyle B_{p}(P,d^{h}):=d^{h}(P_{p+1.*})} obtained by applying the horizontal differential to P p + 1 , {\displaystyle P_{p+1,*}} {\displaystyle P_{p+1,*}} (the p + 1 {\displaystyle p+1} {\displaystyle p+1}st column of P , {\displaystyle P_{*,*}} {\displaystyle P_{*,*}}) forms a projective resolution B p ( ε ) : B p ( P , d h ) B p ( A ) {\displaystyle B_{p}(\varepsilon ):B_{p}(P,d^{h})\to B_{p}(A)} {\displaystyle B_{p}(\varepsilon ):B_{p}(P,d^{h})\to B_{p}(A)} of the boundaries of A p {\displaystyle A_{p}} {\displaystyle A_{p}}.
    • The complex H p ( P , d h ) {\displaystyle H_{p}(P,d^{h})} {\displaystyle H_{p}(P,d^{h})} obtained by taking the homology of each row with respect to the horizontal differential forms a projective resolution H p ( ε ) : H p ( P , d h ) H p ( A ) {\displaystyle H_{p}(\varepsilon ):H_{p}(P,d^{h})\to H_{p}(A)} {\displaystyle H_{p}(\varepsilon ):H_{p}(P,d^{h})\to H_{p}(A)} of degree p homology of A {\displaystyle A} {\displaystyle A}.

It can be shown that for each p, the column P p , {\displaystyle P_{p,*}} {\displaystyle P_{p,*}} is a projective resolution of A p {\displaystyle A_{p}} {\displaystyle A_{p}}.

There is an analogous definition using injective resolutions and cochain complexes.

The existence of Cartan–Eilenberg resolutions can be proved via the horseshoe lemma.

Hyper-derived functors

[edit ]

Given a right exact functor F : A B {\displaystyle F\colon {\mathcal {A}}\to {\mathcal {B}}} {\displaystyle F\colon {\mathcal {A}}\to {\mathcal {B}}}, one can define the left hyper-derived functors of F {\displaystyle F} {\displaystyle F} on a chain complex A {\displaystyle A_{*}} {\displaystyle A_{*}} by

  • Constructing a Cartan–Eilenberg resolution ε : P , A {\displaystyle \varepsilon :P_{*,*}\to A_{*}} {\displaystyle \varepsilon :P_{*,*}\to A_{*}},
  • Applying the functor F {\displaystyle F} {\displaystyle F} to P , {\displaystyle P_{*,*}} {\displaystyle P_{*,*}}, and
  • Taking the homology of the resulting total complex.

Similarly, one can also define right hyper-derived functors for left exact functors.

See also

[edit ]

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /