Brownian sheet
In mathematics, a Brownian sheet or multiparametric Brownian motion is a multiparametric generalization of the Brownian motion to a Gaussian random field. This means we generalize the "time" parameter {\displaystyle t} of a Brownian motion {\displaystyle B_{t}} from {\displaystyle \mathbb {R} _{+}} to {\displaystyle \mathbb {R} _{+}^{n}}.
The exact dimension {\displaystyle n} of the space of the new time parameter varies from authors. We follow John B. Walsh and define the {\displaystyle (n,d)}-Brownian sheet, while some authors define the Brownian sheet specifically only for {\displaystyle n=2}, what we call the {\displaystyle (2,d)}-Brownian sheet.[1]
This definition is due to Nikolai Chentsov, there exist a slightly different version due to Paul Lévy.
(n,d)-Brownian sheet
[edit ]A {\displaystyle d}-dimensional gaussian process {\displaystyle B=(B_{t},t\in \mathbb {R} _{+}^{n})} is called a {\displaystyle (n,d)}-Brownian sheet if
- it has zero mean, i.e. {\displaystyle \mathbb {E} [B_{t}]=0} for all {\displaystyle t=(t_{1},\dots t_{n})\in \mathbb {R} _{+}^{n}}
- for the covariance function
- {\displaystyle \operatorname {cov} (B_{s}^{(i)},B_{t}^{(j)})={\begin{cases}\prod \limits _{l=1}^{n}\operatorname {min} (s_{l},t_{l})&{\text{if }}i=j,\0円&{\text{else}}\end{cases}}}
- for {\displaystyle 1\leq i,j\leq d}.[2]
Properties
[edit ]From the definition follows
- {\displaystyle B(0,t_{2},\dots ,t_{n})=B(t_{1},0,\dots ,t_{n})=\cdots =B(t_{1},t_{2},\dots ,0)=0}
almost surely.
Examples
[edit ]- {\displaystyle (1,1)}-Brownian sheet is the Brownian motion in {\displaystyle \mathbb {R} ^{1}}.
- {\displaystyle (1,d)}-Brownian sheet is the Brownian motion in {\displaystyle \mathbb {R} ^{d}}.
- {\displaystyle (2,1)}-Brownian sheet is a multiparametric Brownian motion {\displaystyle X_{t,s}} with index set {\displaystyle (t,s)\in [0,\infty )\times [0,\infty )}.
Lévy's definition of the multiparametric Brownian motion
[edit ]In Lévy's definition one replaces the covariance condition above with the following condition
- {\displaystyle \operatorname {cov} (B_{s},B_{t})={\frac {(|t|+|s|-|t-s|)}{2}}}
where {\displaystyle |\cdot |} is the Euclidean metric on {\displaystyle \mathbb {R} ^{n}}.[3]
Existence of abstract Wiener measure
[edit ]Consider the space {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} of continuous functions of the form {\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } satisfying {\displaystyle \lim \limits _{|x|\to \infty }\left(\log(e+|x|)\right)^{-1}|f(x)|=0.} This space becomes a separable Banach space when equipped with the norm {\displaystyle \|f\|_{\Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )}:=\sup _{x\in \mathbb {R} ^{n}}\left(\log(e+|x|)\right)^{-1}|f(x)|.}
Notice this space includes densely the space of zero at infinity {\displaystyle C_{0}(\mathbb {R} ^{n};\mathbb {R} )} equipped with the uniform norm, since one can bound the uniform norm with the norm of {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} from above through the Fourier inversion theorem.
Let {\displaystyle {\mathcal {S}}'(\mathbb {R} ^{n};\mathbb {R} )} be the space of tempered distributions. One can then show that there exist a suitable separable Hilbert space (and Sobolev space)
- {\displaystyle H^{\frac {n+1}{2}}(\mathbb {R} ^{n},\mathbb {R} )\subseteq {\mathcal {S}}'(\mathbb {R} ^{n};\mathbb {R} )}
that is continuously embbeded as a dense subspace in {\displaystyle C_{0}(\mathbb {R} ^{n};\mathbb {R} )} and thus also in {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} and that there exist a probability measure {\displaystyle \omega } on {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} such that the triple {\displaystyle (H^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} ),\Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} ),\omega )} is an abstract Wiener space.
A path {\displaystyle \theta \in \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} is {\displaystyle \omega }-almost surely
- Hölder continuous of exponent {\displaystyle \alpha \in (0,1/2)}
- nowhere Hölder continuous for any {\displaystyle \alpha >1/2}.[4]
This handles of a Brownian sheet in the case {\displaystyle d=1}. For higher dimensional {\displaystyle d}, the construction is similar.
See also
[edit ]Literature
[edit ]- Stroock, Daniel (2011), Probability theory: an analytic view (2nd ed.), Cambridge.
- Walsh, John B. (1986). An introduction to stochastic partial differential equations. Springer Berlin Heidelberg. ISBN 978-3-540-39781-6.
- Khoshnevisan, Davar. Multiparameter Processes: An Introduction to Random Fields. Springer. ISBN 978-0387954592.
References
[edit ]- ^ Walsh, John B. (1986). An introduction to stochastic partial differential equations. Springer Berlin Heidelberg. p. 269. ISBN 978-3-540-39781-6.
- ^ Davar Khoshnevisan und Yimin Xiao (2004), Images of the Brownian Sheet, arXiv:math/0409491
- ^ Ossiander, Mina; Pyke, Ronald (1985). "Lévy's Brownian motion as a set-indexed process and a related central limit theorem". Stochastic Processes and their Applications. 21 (1): 133–145. doi:10.1016/0304-4149(85)90382-5.
- ^ Stroock, Daniel (2011), Probability theory: an analytic view (2nd ed.), Cambridge, p. 349-352