Jump to content
Wikipedia The Free Encyclopedia

Born equation

From Wikipedia, the free encyclopedia
Equation for Gibbs free energy of solvation

The Born equation can be used for estimating the electrostatic component of Gibbs free energy of solvation of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of methods known as continuum solvation methods).

It was derived by Max Born.[1] [2]

Δ G = N A z 2 e 2 8 π ε 0 r 0 ( 1 1 ε r ) {\displaystyle \Delta G=-{\frac {N_{A}z^{2}e^{2}}{8\pi \varepsilon _{0}r_{0}}}\left(1-{\frac {1}{\varepsilon _{r}}}\right)} {\displaystyle \Delta G=-{\frac {N_{A}z^{2}e^{2}}{8\pi \varepsilon _{0}r_{0}}}\left(1-{\frac {1}{\varepsilon _{r}}}\right)} where:

Derivation

[edit ]

The energy U stored in an electrostatic field distribution is: U = 1 2 ε 0 ε r | E | 2 d V {\displaystyle U={\frac {1}{2}}\varepsilon _{0}\varepsilon _{r}\int |{\bf {E}}|^{2}dV} {\displaystyle U={\frac {1}{2}}\varepsilon _{0}\varepsilon _{r}\int |{\bf {E}}|^{2}dV}Knowing the magnitude of the electric field of an ion in a medium of dielectric constant εr is | E | = z e 4 π ε 0 ε r r 2 {\displaystyle |{\bf {E}}|={\frac {ze}{4\pi \varepsilon _{0}\varepsilon _{r}r^{2}}}} {\displaystyle |{\bf {E}}|={\frac {ze}{4\pi \varepsilon _{0}\varepsilon _{r}r^{2}}}} and the volume element d V {\displaystyle dV} {\displaystyle dV} can be expressed as d V = 4 π r 2 d r {\displaystyle dV=4\pi r^{2}dr} {\displaystyle dV=4\pi r^{2}dr}, the energy U {\displaystyle U} {\displaystyle U} can be written as: U = 1 2 ε 0 ε r r 0 ( z e 4 π ε 0 ε r r 2 ) 2 4 π r 2 d r = z 2 e 2 8 π ε 0 ε r r 0 {\displaystyle U={\frac {1}{2}}\varepsilon _{0}\varepsilon _{r}\int _{r_{0}}^{\infty }\left({\frac {ze}{4\pi \varepsilon _{0}\varepsilon _{r}r^{2}}}\right)^{2}4\pi r^{2}dr={\frac {z^{2}e^{2}}{8\pi \varepsilon _{0}\varepsilon _{r}r_{0}}}} {\displaystyle U={\frac {1}{2}}\varepsilon _{0}\varepsilon _{r}\int _{r_{0}}^{\infty }\left({\frac {ze}{4\pi \varepsilon _{0}\varepsilon _{r}r^{2}}}\right)^{2}4\pi r^{2}dr={\frac {z^{2}e^{2}}{8\pi \varepsilon _{0}\varepsilon _{r}r_{0}}}}Thus, the energy of solvation of the ion from gas phase (εr =1) to a medium of dielectric constant εr is: Δ G N A = U ( ε r ) U ( ε r = 1 ) = z 2 e 2 8 π ε 0 r 0 ( 1 1 ε r ) {\displaystyle {\frac {\Delta G}{N_{A}}}=U(\varepsilon _{r})-U(\varepsilon _{r}=1)=-{\frac {z^{2}e^{2}}{8\pi \varepsilon _{0}r_{0}}}\left(1-{\frac {1}{\varepsilon _{r}}}\right)} {\displaystyle {\frac {\Delta G}{N_{A}}}=U(\varepsilon _{r})-U(\varepsilon _{r}=1)=-{\frac {z^{2}e^{2}}{8\pi \varepsilon _{0}r_{0}}}\left(1-{\frac {1}{\varepsilon _{r}}}\right)}

References

[edit ]
  1. ^ Born, M. (1920年02月01日). "Volumen und Hydratationswärme der Ionen". Zeitschrift für Physik (in German). 1 (1): 45–48. Bibcode:1920ZPhy....1...45B. doi:10.1007/BF01881023. ISSN 0044-3328. S2CID 92547891.
  2. ^ Atkins; De Paula (2006). Physical Chemistry (8th ed.). Oxford university press. p. 102. ISBN 0-7167-8759-8.
[edit ]


Stub icon

This physical chemistry-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /