Baskakov operator
In functional analysis, a branch of mathematics, the Baskakov operators are generalizations of Bernstein polynomials, Szász–Mirakyan operators, and Lupas operators. They are defined by
- {\displaystyle [{\mathcal {L}}_{n}(f)](x)=\sum _{k=0}^{\infty }{(-1)^{k}{\frac {x^{k}}{k!}}\phi _{n}^{(k)}(x)f\left({\frac {k}{n}}\right)}}
where {\displaystyle x\in [0,b)\subset \mathbb {R} } ({\displaystyle b} can be {\displaystyle \infty }), {\displaystyle n\in \mathbb {N} }, and {\displaystyle (\phi _{n})_{n\in \mathbb {N} }} is a sequence of functions defined on {\displaystyle [0,b]} that have the following properties for all {\displaystyle n,k\in \mathbb {N} }:
- {\displaystyle \phi _{n}\in {\mathcal {C}}^{\infty }[0,b]}. Alternatively, {\displaystyle \phi _{n}} has a Taylor series on {\displaystyle [0,b)}.
- {\displaystyle \phi _{n}(0)=1}
- {\displaystyle \phi _{n}} is completely monotone, i.e. {\displaystyle (-1)^{k}\phi _{n}^{(k)}\geq 0}.
- There is an integer {\displaystyle c} such that {\displaystyle \phi _{n}^{(k+1)}=-n\phi _{n+c}^{(k)}} whenever {\displaystyle n>\max\{0,-c\}}
They are named after V. A. Baskakov, who studied their convergence to bounded, continuous functions.[1]
Basic results
[edit ]The Baskakov operators are linear and positive.[2]
References
[edit ]- Baskakov, V. A. (1957). Пример последовательности линейных положительных операторов в пространстве непрерывных функций [An example of a sequence of linear positive operators in the space of continuous functions]. Doklady Akademii Nauk SSSR (in Russian). 113: 249–251.
Footnotes
[edit ]- ^ Agrawal, P. N. (2001) [1994], "Baskakov operators", in Michiel Hazewinkel (ed.), Encyclopedia of Mathematics , EMS Press, ISBN 1-4020-0609-8
- ^ Agrawal, P. N.; T. A. K. Sinha (2001) [1994], "Bernstein–Baskakov–Kantorovich operator", in Michiel Hazewinkel (ed.), Encyclopedia of Mathematics , EMS Press, ISBN 1-4020-0609-8
This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.