Jump to content
Wikipedia The Free Encyclopedia

Axial multipole moments

From Wikipedia, the free encyclopedia
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Axial multipole moments" – news · newspapers · books · scholar · JSTOR
(February 2024) (Learn how and when to remove this message)

Axial multipole moments are a series expansion of the electric potential of a charge distribution localized close to the origin along one Cartesian axis, denoted here as the z-axis. However, the axial multipole expansion can also be applied to any potential or field that varies inversely with the distance to the source, i.e., as 1 R {\displaystyle {\frac {1}{R}}} {\displaystyle {\frac {1}{R}}}. For clarity, we first illustrate the expansion for a single point charge, then generalize to an arbitrary charge density λ ( z ) {\displaystyle \lambda (z)} {\displaystyle \lambda (z)} localized to the z-axis.

Figure 1: Point charge on the z axis; Definitions for axial multipole expansion

Axial multipole moments of a point charge

[edit ]

The electric potential of a point charge q located on the z-axis at z = a {\displaystyle z=a} {\displaystyle z=a} (Fig. 1) equals Φ ( r ) = q 4 π ε 1 R = q 4 π ε 1 r 2 + a 2 2 a r cos θ . {\displaystyle \Phi (\mathbf {r} )={\frac {q}{4\pi \varepsilon }}{\frac {1}{R}}={\frac {q}{4\pi \varepsilon }}{\frac {1}{\sqrt {r^{2}+a^{2}-2ar\cos \theta }}}.} {\displaystyle \Phi (\mathbf {r} )={\frac {q}{4\pi \varepsilon }}{\frac {1}{R}}={\frac {q}{4\pi \varepsilon }}{\frac {1}{\sqrt {r^{2}+a^{2}-2ar\cos \theta }}}.}

If the radius r of the observation point is greater than a, we may factor out 1 r {\textstyle {\frac {1}{r}}} {\textstyle {\frac {1}{r}}} and expand the square root in powers of ( a / r ) < 1 {\displaystyle (a/r)<1} {\displaystyle (a/r)<1} using Legendre polynomials Φ ( r ) = q 4 π ε r k = 0 ( a r ) k P k ( cos θ ) 1 4 π ε k = 0 M k ( 1 r k + 1 ) P k ( cos θ ) {\displaystyle \Phi (\mathbf {r} )={\frac {q}{4\pi \varepsilon r}}\sum _{k=0}^{\infty }\left({\frac {a}{r}}\right)^{k}P_{k}(\cos \theta )\equiv {\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }M_{k}\left({\frac {1}{r^{k+1}}}\right)P_{k}(\cos \theta )} {\displaystyle \Phi (\mathbf {r} )={\frac {q}{4\pi \varepsilon r}}\sum _{k=0}^{\infty }\left({\frac {a}{r}}\right)^{k}P_{k}(\cos \theta )\equiv {\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }M_{k}\left({\frac {1}{r^{k+1}}}\right)P_{k}(\cos \theta )} where the axial multipole moments M k q a k {\displaystyle M_{k}\equiv qa^{k}} {\displaystyle M_{k}\equiv qa^{k}} contain everything specific to a given charge distribution; the other parts of the electric potential depend only on the coordinates of the observation point P. Special cases include the axial monopole moment M 0 = q {\displaystyle M_{0}=q} {\displaystyle M_{0}=q}, the axial dipole moment M 1 = q a {\displaystyle M_{1}=qa} {\displaystyle M_{1}=qa} and the axial quadrupole moment M 2 q a 2 {\displaystyle M_{2}\equiv qa^{2}} {\displaystyle M_{2}\equiv qa^{2}}.[1] This illustrates the general theorem that the lowest non-zero multipole moment is independent of the origin of the coordinate system, but higher multipole moments are not (in general).

Conversely, if the radius r is less than a, we may factor out 1 a {\displaystyle {\frac {1}{a}}} {\displaystyle {\frac {1}{a}}} and expand in powers of ( r / a ) < 1 {\displaystyle (r/a)<1} {\displaystyle (r/a)<1}, once again using Legendre polynomials Φ ( r ) = q 4 π ε a k = 0 ( r a ) k P k ( cos θ ) 1 4 π ε k = 0 I k r k P k ( cos θ ) {\displaystyle \Phi (\mathbf {r} )={\frac {q}{4\pi \varepsilon a}}\sum _{k=0}^{\infty }\left({\frac {r}{a}}\right)^{k}P_{k}(\cos \theta )\equiv {\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }I_{k}r^{k}P_{k}(\cos \theta )} {\displaystyle \Phi (\mathbf {r} )={\frac {q}{4\pi \varepsilon a}}\sum _{k=0}^{\infty }\left({\frac {r}{a}}\right)^{k}P_{k}(\cos \theta )\equiv {\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }I_{k}r^{k}P_{k}(\cos \theta )} where the interior axial multipole moments I k q a k + 1 {\textstyle I_{k}\equiv {\frac {q}{a^{k+1}}}} {\textstyle I_{k}\equiv {\frac {q}{a^{k+1}}}} contain everything specific to a given charge distribution; the other parts depend only on the coordinates of the observation point P.

General axial multipole moments

[edit ]

To get the general axial multipole moments, we replace the point charge of the previous section with an infinitesimal charge element λ ( ζ )   d ζ {\displaystyle \lambda (\zeta )\ d\zeta } {\displaystyle \lambda (\zeta )\ d\zeta }, where λ ( ζ ) {\displaystyle \lambda (\zeta )} {\displaystyle \lambda (\zeta )} represents the charge density at position z = ζ {\displaystyle z=\zeta } {\displaystyle z=\zeta } on the z-axis. If the radius r of the observation point P is greater than the largest | ζ | {\displaystyle \left|\zeta \right|} {\displaystyle \left|\zeta \right|} for which λ ( ζ ) {\displaystyle \lambda (\zeta )} {\displaystyle \lambda (\zeta )} is significant (denoted ζ max {\displaystyle \zeta _{\text{max}}} {\displaystyle \zeta _{\text{max}}}), the electric potential may be written Φ ( r ) = 1 4 π ε k = 0 M k ( 1 r k + 1 ) P k ( cos θ ) {\displaystyle \Phi (\mathbf {r} )={\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }M_{k}\left({\frac {1}{r^{k+1}}}\right)P_{k}(\cos \theta )} {\displaystyle \Phi (\mathbf {r} )={\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }M_{k}\left({\frac {1}{r^{k+1}}}\right)P_{k}(\cos \theta )} where the axial multipole moments M k {\displaystyle M_{k}} {\displaystyle M_{k}} are defined M k d ζ   λ ( ζ ) ζ k {\displaystyle M_{k}\equiv \int d\zeta \ \lambda (\zeta )\zeta ^{k}} {\displaystyle M_{k}\equiv \int d\zeta \ \lambda (\zeta )\zeta ^{k}}

Special cases include the axial monopole moment (=total charge) M 0 d ζ   λ ( ζ ) , {\displaystyle M_{0}\equiv \int d\zeta \ \lambda (\zeta ),} {\displaystyle M_{0}\equiv \int d\zeta \ \lambda (\zeta ),} the axial dipole moment M 1 d ζ   λ ( ζ )   ζ {\textstyle M_{1}\equiv \int d\zeta \ \lambda (\zeta )\ \zeta } {\textstyle M_{1}\equiv \int d\zeta \ \lambda (\zeta )\ \zeta }, and the axial quadrupole moment M 2 d ζ   λ ( ζ )   ζ 2 {\textstyle M_{2}\equiv \int d\zeta \ \lambda (\zeta )\ \zeta ^{2}} {\textstyle M_{2}\equiv \int d\zeta \ \lambda (\zeta )\ \zeta ^{2}}. Each successive term in the expansion varies inversely with a greater power of r {\displaystyle r} {\displaystyle r}, e.g., the monopole potential varies as 1 r {\textstyle {\frac {1}{r}}} {\textstyle {\frac {1}{r}}}, the dipole potential varies as 1 r 2 {\textstyle {\frac {1}{r^{2}}}} {\textstyle {\frac {1}{r^{2}}}}, the quadrupole potential varies as 1 r 3 {\textstyle {\frac {1}{r^{3}}}} {\textstyle {\frac {1}{r^{3}}}}, etc. Thus, at large distances ( ζ max r 1 {\textstyle {\frac {\zeta _{\text{max}}}{r}}\ll 1} {\textstyle {\frac {\zeta _{\text{max}}}{r}}\ll 1}), the potential is well-approximated by the leading nonzero multipole term.

The lowest non-zero axial multipole moment is invariant under a shift b in origin, but higher moments generally depend on the choice of origin. The shifted multipole moments M k {\displaystyle M'_{k}} {\displaystyle M'_{k}} would be M k d ζ   λ ( ζ )   ( ζ + b ) k {\displaystyle M_{k}^{\prime }\equiv \int d\zeta \ \lambda (\zeta )\ \left(\zeta +b\right)^{k}} {\displaystyle M_{k}^{\prime }\equiv \int d\zeta \ \lambda (\zeta )\ \left(\zeta +b\right)^{k}}

Expanding the polynomial under the integral ( ζ + b ) l = ζ l + l b ζ l 1 + + l ζ b l 1 + b l {\displaystyle \left(\zeta +b\right)^{l}=\zeta ^{l}+lb\zeta ^{l-1}+\dots +l\zeta b^{l-1}+b^{l}} {\displaystyle \left(\zeta +b\right)^{l}=\zeta ^{l}+lb\zeta ^{l-1}+\dots +l\zeta b^{l-1}+b^{l}} leads to the equation M k = M k + l b M k 1 + + l b l 1 M 1 + b l M 0 {\displaystyle M_{k}^{\prime }=M_{k}+lbM_{k-1}+\dots +lb^{l-1}M_{1}+b^{l}M_{0}} {\displaystyle M_{k}^{\prime }=M_{k}+lbM_{k-1}+\dots +lb^{l-1}M_{1}+b^{l}M_{0}} If the lower moments M k 1 , M k 2 , , M 1 , M 0 {\displaystyle M_{k-1},M_{k-2},\ldots ,M_{1},M_{0}} {\displaystyle M_{k-1},M_{k-2},\ldots ,M_{1},M_{0}} are zero, then M k = M k {\displaystyle M_{k}^{\prime }=M_{k}} {\displaystyle M_{k}^{\prime }=M_{k}}. The same equation shows that multipole moments higher than the first non-zero moment do depend on the choice of origin (in general).

Interior axial multipole moments

[edit ]

Conversely, if the radius r is smaller than the smallest | ζ | {\displaystyle \left|\zeta \right|} {\displaystyle \left|\zeta \right|} for which λ ( ζ ) {\displaystyle \lambda (\zeta )} {\displaystyle \lambda (\zeta )} is significant (denoted ζ min {\displaystyle \zeta _{\text{min}}} {\displaystyle \zeta _{\text{min}}}), the electric potential may be written Φ ( r ) = 1 4 π ε k = 0 I k r k P k ( cos θ ) {\displaystyle \Phi (\mathbf {r} )={\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }I_{k}r^{k}P_{k}(\cos \theta )} {\displaystyle \Phi (\mathbf {r} )={\frac {1}{4\pi \varepsilon }}\sum _{k=0}^{\infty }I_{k}r^{k}P_{k}(\cos \theta )} where the interior axial multipole moments I k {\displaystyle I_{k}} {\displaystyle I_{k}} are defined I k d ζ   λ ( ζ ) ζ k + 1 {\displaystyle I_{k}\equiv \int d\zeta \ {\frac {\lambda (\zeta )}{\zeta ^{k+1}}}} {\displaystyle I_{k}\equiv \int d\zeta \ {\frac {\lambda (\zeta )}{\zeta ^{k+1}}}}

Special cases include the interior axial monopole moment ( {\displaystyle \neq } {\displaystyle \neq } the total charge) M 0 d ζ   λ ( ζ ) ζ , {\displaystyle M_{0}\equiv \int d\zeta \ {\frac {\lambda (\zeta )}{\zeta }},} {\displaystyle M_{0}\equiv \int d\zeta \ {\frac {\lambda (\zeta )}{\zeta }},} the interior axial dipole moment M 1 d ζ   λ ( ζ ) ζ 2 {\textstyle M_{1}\equiv \int d\zeta \ {\frac {\lambda (\zeta )}{\zeta ^{2}}}} {\textstyle M_{1}\equiv \int d\zeta \ {\frac {\lambda (\zeta )}{\zeta ^{2}}}}, etc. Each successive term in the expansion varies with a greater power of r {\displaystyle r} {\displaystyle r}, e.g., the interior monopole potential varies as r {\displaystyle r} {\displaystyle r}, the dipole potential varies as r 2 {\displaystyle r^{2}} {\displaystyle r^{2}}, etc. At short distances ( r ζ min 1 {\textstyle {\frac {r}{\zeta _{\text{min}}}}\ll 1} {\textstyle {\frac {r}{\zeta _{\text{min}}}}\ll 1}), the potential is well-approximated by the leading nonzero interior multipole term.

See also

[edit ]

References

[edit ]
  1. ^ Eyges, Leonard (2012年06月11日). The Classical Electromagnetic Field. Courier Corporation. p. 22. ISBN 978-0-486-15235-6.

AltStyle によって変換されたページ (->オリジナル) /