Jump to content
Wikipedia The Free Encyclopedia

Acyclic object

From Wikipedia, the free encyclopedia

In mathematics, in the field of homological algebra, given an abelian category C {\displaystyle {\mathcal {C}}} {\displaystyle {\mathcal {C}}} having enough injectives and an additive (covariant) functor

F : C D {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}} {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}},

an acyclic object with respect to F {\displaystyle F} {\displaystyle F}, or simply an F {\displaystyle F} {\displaystyle F}-acyclic object, is an object A {\displaystyle A} {\displaystyle A} in C {\displaystyle {\mathcal {C}}} {\displaystyle {\mathcal {C}}} such that

R i F ( A ) = 0 {\displaystyle {\rm {R}}^{i}F(A)=0,円\!} {\displaystyle {\rm {R}}^{i}F(A)=0,円\!} for all i > 0 {\displaystyle i>0,円\!} {\displaystyle i>0,円\!},

where R i F {\displaystyle {\rm {R}}^{i}F} {\displaystyle {\rm {R}}^{i}F} are the right derived functors of F {\displaystyle F} {\displaystyle F}.[1]

References

[edit ]
  1. ^ Caenepeel, Stefaan (1998). Brauer groups, Hopf algebras and Galois theory. Monographs in Mathematics. Vol. 4. Dordrecht: Kluwer Academic Publishers. p. 454. ISBN 1-4020-0346-3. Zbl 0898.16001.

AltStyle によって変換されたページ (->オリジナル) /