Acyclic object
Appearance
From Wikipedia, the free encyclopedia
In mathematics, in the field of homological algebra, given an abelian category {\displaystyle {\mathcal {C}}} having enough injectives and an additive (covariant) functor
- {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}},
an acyclic object with respect to {\displaystyle F}, or simply an {\displaystyle F}-acyclic object, is an object {\displaystyle A} in {\displaystyle {\mathcal {C}}} such that
- {\displaystyle {\rm {R}}^{i}F(A)=0,円\!} for all {\displaystyle i>0,円\!},
where {\displaystyle {\rm {R}}^{i}F} are the right derived functors of {\displaystyle F}.[1]
References
[edit ]- ^ Caenepeel, Stefaan (1998). Brauer groups, Hopf algebras and Galois theory. Monographs in Mathematics. Vol. 4. Dordrecht: Kluwer Academic Publishers. p. 454. ISBN 1-4020-0346-3. Zbl 0898.16001.