Jump to content
Wikipedia The Free Encyclopedia

71 knot

From Wikipedia, the free encyclopedia
(Redirected from 71 knot)
Mathematical knot with crossing number 7
71 knot
Arf invariant 0
Braid length 7
Braid no. 2
Bridge no. 2
Crosscap no. 1
Crossing no. 7
Genus 3
Hyperbolic volume 0
Stick no. 9
Unknotting no. 3
Conway notation [7]
A–B notation 71
Dowker notation 8, 10, 12, 14, 2, 4, 6
Last / Next 6372
Other
alternating, torus, fibered, prime, reversible


In knot theory, the 71 knot, also known as the septoil knot, the septafoil knot, or the (7, 2)-torus knot, is one of seven prime knots with crossing number seven. It is the simplest torus knot after the trefoil and cinquefoil.

Properties

[edit ]

The 71 knot is invertible but not amphichiral. Its Alexander polynomial is

Δ ( t ) = t 3 t 2 + t 1 + t 1 t 2 + t 3 , {\displaystyle \Delta (t)=t^{3}-t^{2}+t-1+t^{-1}-t^{-2}+t^{-3},,円} {\displaystyle \Delta (t)=t^{3}-t^{2}+t-1+t^{-1}-t^{-2}+t^{-3},,円}

its Conway polynomial is

( z ) = z 6 + 5 z 4 + 6 z 2 + 1 , {\displaystyle \nabla (z)=z^{6}+5z^{4}+6z^{2}+1,,円} {\displaystyle \nabla (z)=z^{6}+5z^{4}+6z^{2}+1,,円}

and its Jones polynomial is

V ( q ) = q 3 + q 5 q 6 + q 7 q 8 + q 9 q 10 . {\displaystyle V(q)=q^{-3}+q^{-5}-q^{-6}+q^{-7}-q^{-8}+q^{-9}-q^{-10}.,円} {\displaystyle V(q)=q^{-3}+q^{-5}-q^{-6}+q^{-7}-q^{-8}+q^{-9}-q^{-10}.,円}[1]

Example

[edit ]
Assembling of 71 knot.


See also

[edit ]

References

[edit ]
Hyperbolic
Satellite
Torus
Invariants
Notation
and operations
Other


AltStyle によって変換されたページ (->オリジナル) /