std::acos(std::complex)
From cppreference.com
C++
Feature test macros (C++20)
Concepts library (C++20)
Metaprogramming library (C++11)
Ranges library (C++20)
Filesystem library (C++17)
Concurrency support library (C++11)
Execution control library (C++26)
Numerics library
Mathematical special functions (C++17)
Mathematical constants (C++20)
Basic linear algebra algorithms (C++26)
Data-parallel types (SIMD) (C++26)
Floating-point environment (C++11)
Bit manipulation (C++20)
Saturation arithmetic (C++26)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
std::complex
(until C++20)
(C++26)
(C++26)
(C++26)
Defined in header
<complex>
template< class T >
complex<T> acos( const complex<T>& z );
(since C++11)
complex<T> acos( const complex<T>& z );
Computes complex arc cosine of a complex value z. Branch cuts exist outside the interval [−1, +1] along the real axis.
Contents
[edit] Parameters
z
-
complex value
[edit] Return value
If no errors occur, complex arc cosine of z is returned, in the range of a strip unbounded along the imaginary axis and in the interval [0, +π] along the real axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling .
If the implementation supports IEEE floating-point arithmetic,
- std::acos (std::conj (z)) == std::conj (std::acos (z))
- If z is
(±0,+0)
, the result is(π/2,-0)
- If z is
(±0,NaN)
, the result is(π/2,NaN)
- If z is
(x,+∞)
(for any finite x), the result is(π/2,-∞)
- If z is
(x,NaN)
(for any nonzero finite x), the result is(NaN,NaN)
and FE_INVALID may be raised. - If z is
(-∞,y)
(for any positive finite y), the result is(π,-∞)
- If z is
(+∞,y)
(for any positive finite y), the result is(+0,-∞)
- If z is
(-∞,+∞)
, the result is(3π/4,-∞)
- If z is
(+∞,+∞)
, the result is(π/4,-∞)
- If z is
(±∞,NaN)
, the result is(NaN,±∞)
(the sign of the imaginary part is unspecified) - If z is
(NaN,y)
(for any finite y), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(NaN,+∞)
, the result is(NaN,-∞)
- If z is
(NaN,NaN)
, the result is(NaN,NaN)
[edit] Notes
Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1) and (1,∞) of the real axis.
The mathematical definition of the principal value of arc cosine is acos z = 1
2
π + iln(iz + √1-z2).
For any z, acos(z) = π - acos(-z).
[edit] Example
Run this code
#include <cmath> #include <complex> #include <iostream> int main() { std::cout << std::fixed ; std::complex <double> z1(-2.0, 0.0); std::cout << "acos" << z1 << " = " << std::acos (z1) << '\n'; std::complex <double> z2(-2.0, -0.0); std::cout << "acos" << z2 << " (the other side of the cut) = " << std::acos (z2) << '\n'; // for any z, acos(z) = pi - acos(-z) const double pi = std::acos (-1); std::complex <double> z3 = pi - std::acos (z2); std::cout << "cos(pi - acos" << z2 << ") = " << std::cos (z3) << '\n'; }
Output:
acos(-2.000000,0.000000) = (3.141593,-1.316958) acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958) cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)
[edit] See also
(C++11)
(function template) [edit]
(C++11)
(function template) [edit]
C documentation for cacos