Namespaces
Variants
Actions

std::riemann_zeta, std::riemann_zetaf, std::riemann_zetal

From cppreference.com
 
 
Experimental
Filesystem library (filesystem TS)
Library fundamentals (library fundamentals TS)
Library fundamentals 2 (library fundamentals TS v2)
Library fundamentals 3 (library fundamentals TS v3)
Extensions for parallelism (parallelism TS)
Extensions for parallelism 2 (parallelism TS v2)
Extensions for concurrency (concurrency TS)
Extensions for concurrency 2 (concurrency TS v2)
Concepts (concepts TS)
Ranges (ranges TS)
Reflection (reflection TS)
Mathematical special functions (special functions TR)
 
 
double      riemann_zeta( double arg );

double      riemann_zeta( float arg );
double      riemann_zeta( long double arg );
float       riemann_zetaf( float arg );

long double riemann_zetal( long double arg );
(1)
double      riemann_zeta( IntegralType arg );
(2)
1) Computes the Riemann zeta function of arg.
2) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (1) after casting the argument to double.

As all special functions, riemann_zeta is only guaranteed to be available in <cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

[edit] Parameters

arg - value of a floating-point or integral type

[edit] Return value

If no errors occur, value of the Riemann zeta function of arg, ζ(arg), defined for the entire real axis:

  • For arg > 1, Σ
    n=1
    n-arg
    .
  • For 0 ≤ arg ≤ 1,
    1
    1 - 21-arg
    Σ
    n=1
    (-1)n-1
    n-arg
    .
  • For arg < 0, 2arg
    πarg-1
    sin(
    πarg
    2
    )Γ(1 − arg)ζ(1 − arg)
    .

[edit] Error handling

Errors may be reported as specified in math_errhandling.

  • If the argument is NaN, NaN is returned and domain error is not reported.

[edit] Notes

Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

[edit] Example

(works as shown with gcc 6.0)

Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
 
int main()
{
 // spot checks for well-known values
 std::cout << "ζ(-1) = " << std::riemann_zeta (-1) << '\n'
 << "ζ(0) = " << std::riemann_zeta (0) << '\n'
 << "ζ(1) = " << std::riemann_zeta (1) << '\n'
 << "ζ(0.5) = " << std::riemann_zeta (0.5) << '\n'
 << "ζ(2) = " << std::riemann_zeta (2) << ' '
 << "(π2/6 = " << std::pow (std::acos (-1), 2) / 6 << ")\n";
}

Output:

ζ(-1) = -0.0833333
ζ(0) = -0.5
ζ(1) = inf
ζ(0.5) = -1.46035
ζ(2) = 1.64493 (π2/6 = 1.64493)

[edit] External links

Weisstein, Eric W. "Riemann Zeta Function." From MathWorld--A Wolfram Web Resource.

Retrieved from "https://en.cppreference.com/mwiki/index.php?title=cpp/experimental/special_functions/riemann_zeta&oldid=158802"

AltStyle によって変換されたページ (->オリジナル) /