erf, erff, erfl
From cppreference.com
C
Concurrency support (C11)
Common mathematical functions
Functions
Basic operations
Maximum/minimum operations
(C23)
(C23)
(C23)
(C23)
(C23)
Exponential functions
Power functions
Trigonometric and hyperbolic functions
Nearest integer floating-point
Floating-point manipulation
Narrowing operations
Quantum and quantum exponent
(C23)
(C23)
(C23)
(C23)
Decimal re-encoding functions
(C23)
(C23)
(C23)
(C23)
Total order and payload functions
(C23)
(C23)
(C23)
(C23)
Classification
(C99)
(C23)
(C99)
(C99)
(C99)
(C99)
(C99)
(C23)
(C23)
(C99)
(C99)
(C99)
(C99)
(C99)
(C99)
(C23)
(C23)
Error and gamma functions
Types
(C99)(C99)
(C99)(C99)
(C23)(C23)
Macro constants
Special floating-point values
(C99)(C99)(C23)
(C99)(C23)
(C99)(C23)
Arguments and return values
(C99)(C99)
(C99)(C99)(C99)(C99)(C99)
(C23)(C23)
(C23)(C23)(C23)(C23)(C23)
Error handling
(C99)(C99)
(C99)
Fast operation indicators
(C99)(C99)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
(C99)(C23)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
Defined in header
<math.h>
float erff( float arg );
(1)
(since C99)
double erf( double arg );
(2)
(since C99)
long double erfl( long double arg );
(3)
(since C99)
Defined in header
<tgmath.h>
#define erf( arg )
(4)
(since C99)
4) Type-generic macro: If arg has type long double,
erfl
is called. Otherwise, if arg has integer type or the type double, erf
is called. Otherwise, erff
is called.Contents
[edit] Parameters
arg
-
floating-point value
[edit] Return value
If no errors occur, value of the error function of arg, that is \(\frac{2}{\sqrt{\pi} }\int_{0}^{arg}{e^{-{t^2} }\mathsf{d}t}\) 2
√π
∫arg0e-t2
dt, is returned. If a range error occurs due to underflow, the correct result (after rounding), that is \(\frac{2\cdot arg}{\sqrt{\pi} }\)
2*arg
√π
, is returned.
[edit] Error handling
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, ±0 is returned
- If the argument is ±∞, ±1 is returned
- If the argument is NaN, NaN is returned
[edit] Notes
Underflow is guaranteed if |arg| < DBL_MIN *(sqrt (π)/2).
\(\operatorname{erf}(\frac{x}{\sigma \sqrt{2} })\)erf( x
σ√2
) is the probability that a measurement whose errors are subject to a normal distribution with standard deviation \(\sigma\)σ is less than \(x\)x away from the mean value.
[edit] Example
Run this code
#include <math.h> #include <stdio.h> double phi(double x1, double x2) { return (erf(x2 / sqrt (2)) - erf(x1 / sqrt (2))) / 2; } int main(void) { puts ("normal variate probabilities:"); for (int n = -4; n < 4; ++n) printf ("[%2d:%2d]: %5.2f%%\n", n, n + 1, 100 * phi(n, n + 1)); puts ("special values:"); printf ("erf(-0) = %f\n", erf(-0.0)); printf ("erf(Inf) = %f\n", erf(INFINITY)); }
Output:
normal variate probabilities: [-4:-3]: 0.13% [-3:-2]: 2.14% [-2:-1]: 13.59% [-1: 0]: 34.13% [ 0: 1]: 34.13% [ 1: 2]: 13.59% [ 2: 3]: 2.14% [ 3: 4]: 0.13% special values: erf(-0) = -0.000000 erf(Inf) = 1.000000
[edit] References
- C11 standard (ISO/IEC 9899:2011):
- 7.12.8.1 The erf functions (p: 249)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- F.10.5.1 The erf functions (p: 525)
- C99 standard (ISO/IEC 9899:1999):
- 7.12.8.1 The erf functions (p: 230)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- F.9.5.1 The erf functions (p: 462)
[edit] See also
C++ documentation for erf
[edit] External links
Weisstein, Eric W. "Erf." From MathWorld — A Wolfram Web Resource.